The overall goal of this interinstitutional NINDS P30 Core Grant is to foster new interdisciplinary collaborations among neuroscientists in La Jolla institutions by allowing access to scientific cores to which they were previously denied or had little access, and by promoting new cores to promote state-of-the-art technology;these cores were started under the prior auspices of the NIH Blueprint Core Grant (P30 NS057096) that was awarded to the PI, Dr. Lipton, for the past five years. Since the entire Blueprint Core Grant Program has been terminated by NIH, NINDS Program Officials asked us to submit this NINDS P30 Core Grant. To accomplish our goal, we have chosen among the very best core facilities on the Blueprint Core Grant, and have chosen top scientists to run these cores at the Sanford-Burnham Medical Research Institute (SBMIR) and the University of California San Diego (UCSD) in order to assist NINDS neuroscientists in La Jolla. The cores proposed here represent (i) High-Throughput (HS) Library Screening (at SBMRI), (ii) Neuropathology (at UCSD), and (iii) Electrophysiology (at SBMIR with Advisors at Salk), in addition to (iv) an Administrative Core (centered at SBMRI). These Core Facilities will be available to neuroscientists at all four institutions on the La Jolla Torrey Pines Mesa, composed of SBMRI, UCSD, Salk, and The Scripps Research Institute. These institutions share one of the top-rated neuroscience graduate programs in the country and have committed considerable institutional funds towards these cores. This work is aimed at developing new treatments for neurological disorders.
The Specific Aims, which will be facilitated by all 3 Scientific Cores and the Administrative Core, are as follows: 1. To obtain Core support for Neuroscientists studying Neurodegenerative Disorders. The Cores will also help develop Neuroprotective Therapies. These disorders, represented in the Qualifying NINDS Projects of Major USERS, include Alzheimer's, Parkinson's, ALS, and Huntington's disease. 2. To obtain Core support for Neuroscientists studying Neoplastic Disorders of the brain. These disorders, represented in the Qualifying NINDS Projects of Major USERs, include glioblastoma multiforme and medulloblastoma tumors. 3. To obtain Core support for Neuroscientists studying Developmental Disorders. Disorders include abnormal neuronal migration, and are represented in NINDS Qualifying Projects of Major USERs.

Public Health Relevance

This NINDS Neuroscience P30 Core Grant will provide facilities to enable neuroscientists in La Jolla to pursue their work on novel therapies for Neurodegenerative Disorders, Neoplastic Disorders of the Brain (tumors), and Neurodevelopmental Disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Center Core Grants (P30)
Project #
5P30NS076411-03
Application #
8525470
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Program Officer
Talley, Edmund M
Project Start
2011-09-26
Project End
2016-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$872,037
Indirect Cost
$339,735
Name
Sanford-Burnham Medical Research Institute
Department
Type
DUNS #
020520466
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Eleuteri, Simona; Di Giovanni, Saviana; Rockenstein, Edward et al. (2015) Novel therapeutic strategy for neurodegeneration by blocking A? seeding mediated aggregation in models of Alzheimer's disease. Neurobiol Dis 74:144-57
Okamoto, Shu-ichi; Lipton, Stuart A (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588-93
Dhungel, Nripesh; Eleuteri, Simona; Li, Ling-Bo et al. (2015) Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on ?-synuclein. Neuron 85:76-87
Jeon, Gye Sun; Nakamura, Tomohiro; Lee, Jeong-Seon et al. (2014) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 49:796-807
Fields, Jerel; Dumaop, Wilmar; Langford, T D et al. (2014) Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 9:102-16
Mandler, Markus; Valera, Elvira; Rockenstein, Edward et al. (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson's disease clinical trials. Acta Neuropathol 127:861-79
May, Verena E L; Ettle, Benjamin; Poehler, Anne-Maria et al. (2014) ?-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging 35:2357-68
Chan, Shing Fai; Sances, Sam; Brill, Laurence M et al. (2014) ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage. J Neurosci 34:4640-53
Choi, Min Sik; Nakamura, Tomohiro; Cho, Seung-Je et al. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J Neurosci 34:15123-31
Okamoto, Shu-Ichi; Nakamura, Tomohiro; Cieplak, Piotr et al. (2014) S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep 8:217-28

Showing the most recent 10 out of 31 publications