The Electrophysiology Core was a new facility created under the NIH Blueprint Neurosciences Core Grant the past four years. This NINDS P30 Core Grant is being submitted to continue this Core. Prior to the construction of this facility, there was no Electrophysiology Core that allowed access to neuroscientists on the La Jolla Torrey Pines Mesa (Sanford-Burnham Medical Research Institute (SBMRI), UCSD, The Scripps Research Institute (TSRI), and Salk). This Electrophysiology facility constitutes an important resource to foster collaborations among neuroscientists in San Diego, and has borne fruit in this regard, as elaborated on below. While the NINDS Qualified Project Major USERs will be given priority access, we aim to accommodate all NINDS scientists, with qualified projects or not, as we have been able to do currentiy by having a number of scientists to perform the experiments in our Core Facility that we can draw upon. With the increasing need for electrophysiology by developmental and systems neurobiologists, it was timely to fill the need for additional capacity in electrophysiology, and this was accomplished by the establishment of this Electrophysiology Core under the NIH Neuroscience Blueprint Grant. The Electrophysiology Core has two goals: First, to provide expertise and instrumentation for electrophysiological experiments by neuroscientists at SBMIR, UCSD, TSRI, and Salk;and second, to enhance neuroscience research through dialogue and collaboration between scientists at these institutes in the area of electrophysiology.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Center Core Grants (P30)
Project #
Application #
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sanford-Burnham Medical Research Institute
La Jolla
United States
Zip Code
Eleuteri, Simona; Di Giovanni, Saviana; Rockenstein, Edward et al. (2015) Novel therapeutic strategy for neurodegeneration by blocking A? seeding mediated aggregation in models of Alzheimer's disease. Neurobiol Dis 74:144-57
Okamoto, Shu-ichi; Lipton, Stuart A (2015) S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta 1850:1588-93
Dhungel, Nripesh; Eleuteri, Simona; Li, Ling-Bo et al. (2015) Parkinson's disease genes VPS35 and EIF4G1 interact genetically and converge on ?-synuclein. Neuron 85:76-87
Jeon, Gye Sun; Nakamura, Tomohiro; Lee, Jeong-Seon et al. (2014) Potential effect of S-nitrosylated protein disulfide isomerase on mutant SOD1 aggregation and neuronal cell death in amyotrophic lateral sclerosis. Mol Neurobiol 49:796-807
Fields, Jerel; Dumaop, Wilmar; Langford, T D et al. (2014) Role of neurotrophic factor alterations in the neurodegenerative process in HIV associated neurocognitive disorders. J Neuroimmune Pharmacol 9:102-16
Mandler, Markus; Valera, Elvira; Rockenstein, Edward et al. (2014) Next-generation active immunization approach for synucleinopathies: implications for Parkinson's disease clinical trials. Acta Neuropathol 127:861-79
May, Verena E L; Ettle, Benjamin; Poehler, Anne-Maria et al. (2014) ?-Synuclein impairs oligodendrocyte progenitor maturation in multiple system atrophy. Neurobiol Aging 35:2357-68
Chan, Shing Fai; Sances, Sam; Brill, Laurence M et al. (2014) ATM-dependent phosphorylation of MEF2D promotes neuronal survival after DNA damage. J Neurosci 34:4640-53
Choi, Min Sik; Nakamura, Tomohiro; Cho, Seung-Je et al. (2014) Transnitrosylation from DJ-1 to PTEN attenuates neuronal cell death in parkinson's disease models. J Neurosci 34:15123-31
Okamoto, Shu-Ichi; Nakamura, Tomohiro; Cieplak, Piotr et al. (2014) S-nitrosylation-mediated redox transcriptional switch modulates neurogenesis and neuronal cell death. Cell Rep 8:217-28

Showing the most recent 10 out of 31 publications