The COBRE in Vascular Biology was established in 2000 with the goal of understanding the mechanisms of vascular remodeling and disease. In the past two funding periods of COBRE support, we have built a successful center of collaborative, independent cardiovascular biology researchers. Integral to our scientific progress was the establishment of institutional core facilities in areas critical to support success of our research program. The core facilities described in this application have developed into widely used institutional and regional resources that have increased scientific collaboration, the quality and impact of our research, and thus the competitiveness of our investigators. This Phase III COBRE application for transitional support aims to further enhance four existing core facilities towards self-sustainability, while additionally providing pilot project support to foster collaborative research using state-of-the-art strategies. The successes of this COBRE in Phases I-II included the assembly of a highly collaborative team of investigators focused on inter-related themes in vascular biology, achievement of independent extramural funding for each investigator, development of a mentoring program with input from both internal and external advisors, and the development of significant research infrastructure to support the goals of all research programs at Maine Medical Center Research Institute (MMCRl).
The specific aims of this application are: 1) to maintain mentorship and training of all Center investigators, trainees, and staff, 2) to promote a collegial, intellectually stimulating environment that fosters scientific excellence, 3) to maintain the Center at the cutting edge of vascular research through infrastructure improvements, advanced training, and financial sustainability, and 4) to stimulate collaborations and enhance grant funding opportunities through a pilot project program.
These aims will continue to advance this program towards national prominence by maintaining state-of-the art research technologies and expertise, and toward self-sufficiency through collaborative multi-investigator and program grants. Our biomedical research programs also contribute to the NIH mission to improve the nation's health, with our focus on understanding mechanisms of disease.

Public Health Relevance

Cardiovascular disease is a major cause of death and disability in the United States. A better understanding of the cellular and molecular mechanisms of vascular cell growth and differentiation will lead to better diagnostic and therapeutic approaches to combat vascular diseases. The multidisciplinary approaches taken by this group of investigators will be advanced by the core facility support proposed in this application.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Center Core Grants (P30)
Project #
1P30RR030927-01A1
Application #
8116264
Study Section
Special Emphasis Panel (ZRR1-RI-B (01))
Program Officer
Douthard, Regine
Project Start
2011-02-15
Project End
2016-01-31
Budget Start
2011-02-15
Budget End
2012-01-31
Support Year
1
Fiscal Year
2011
Total Cost
$1,158,576
Indirect Cost
Name
Maine Medical Center
Department
Type
DUNS #
071732663
City
Portland
State
ME
Country
United States
Zip Code
04102
Soley, Luna; Falank, Carolyne; Reagan, Michaela R (2017) MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells. Curr Osteoporos Rep 15:162-170
Duarte, Christine W; Black, Adam W; Lucas, F Lee et al. (2017) Cancer incidence in patients with hereditary hemorrhagic telangiectasia. J Cancer Res Clin Oncol 143:209-214
He, Qing; Yang, Xuehui; Gong, Yan et al. (2014) Deficiency of Sef is associated with increased postnatal cortical bone mass by regulating Runx2 activity. J Bone Miner Res 29:1217-31
Duarte, Christine W; Murray, Kimberly; Lucas, F Lee et al. (2014) Improved survival outcomes in cancer patients with hereditary hemorrhagic telangiectasia. Cancer Epidemiol Biomarkers Prev 23:117-125
Yang, Xuehui; Gong, Yan; Tang, Yuefeng et al. (2013) Spry1 and Spry4 differentially regulate human aortic smooth muscle cell phenotype via Akt/FoxO/myocardin signaling. PLoS One 8:e58746
Motyl, Katherine J; Bishop, Kathleen A; DeMambro, Victoria E et al. (2013) Altered thermogenesis and impaired bone remodeling in Misty mice. J Bone Miner Res 28:1885-97
Gong, Yan; Yang, Xuehui; He, Qing et al. (2013) Sprouty4 regulates endothelial cell migration via modulating integrin *3 stability through c-Src. Angiogenesis 16:861-75
Le, Phuong; Kawai, Masanobu; Bornstein, Sheila et al. (2012) A high-fat diet induces bone loss in mice lacking the Alox5 gene. Endocrinology 153:6-16
Krebs, Luke T; Bradley, Cara K; Norton, Christine R et al. (2012) The Notch-regulated ankyrin repeat protein is required for proper anterior-posterior somite patterning in mice. Genesis 50:366-74
Apra, Caroline; Richard, Laurence; Coulpier, Fanny et al. (2012) Cthrc1 is a negative regulator of myelination in Schwann cells. Glia 60:393-403

Showing the most recent 10 out of 18 publications