Established during 2000, the Nebraska Center for Virology (NCV;P20RR015635) is a multi-institutional, interdisciplinary center linking the virology expertise and resources at Nebraska's major biomedical research institutions: the University of Nebraska-Lincoln, the University of Nebraska Medical Center, and Creighton University. NCV investigators study human, animal, and plant viruses;their collective expertise presents a national strength and an exceptional opportunity to collaborate on model systems expected to lead to new approaches to understand and treat diseases threatening human health and economic well-being. Following nine years of COBRE program support, the NCV is developing a global research and training presence, and establishing an interdisciplinary research program addressing fundamental questions about infectious agents and their host interactions and creating an environment that is producing a new generation of innovative researchers with a broad knowledge of virology. COBRE support has allowed the Center to establish a critical mass of focused virology expertise and resources on each participating campus;however, to become an independent center, the NCV must bolster its interdisciplinary and cross-campus collaborations and implement a sustainability plan for its core facilities. In addition, several promising junior faculty conducting highly meritorious research continue to need NCV support and mentoring to gain independence. Additional capacity built through Phase III COBRE funding will enable the NCV to realize its strategic plan and achieve its long-term vision: to become an internationally recognized center of research excellence, with outstanding core facilities that serve IDeA, regional, and international scientific communities. This vision will be realized by completing three specific aims: 1) increase the research productivity and external funding potential of NCV faculty by continuing an effective mentoring program for junior faculty, sponsoring a pilot project program, and continuing support for four essential core facilities (administrative, flow cytometry, microscopy, and proteomics);2) strengthen the NCV's focus on translational research and virology research training and education through new partnerships and programs to share viral immunology and molecular virology expertise and scientific resources with researchers, clinicians, and students globally;and 3) emerge from COBRE Phase III funding as a self-sustaining center of research excellence in virology by diversifying the NCV's external research funding portfolio through increased individual-investigator and collaborative grant productivity.

Public Health Relevance

(provided by applicant): Phase III COBRE funding will ideally position the Nebraska Center for Virology to provide the infrastructure support needed to increase understanding of the molecular mechanisms by which different viral agents establish persistent infection, interact with the host, are transmitted from one host to another, and cause disease - with the ultimate goal of contributing to new strategies to treat and prevent such infections.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Center Core Grants (P30)
Project #
3P30RR031151-01S2
Application #
8142446
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Program Officer
Liu, Yanping
Project Start
2010-09-23
Project End
2012-09-22
Budget Start
2010-09-23
Budget End
2012-09-22
Support Year
1
Fiscal Year
2010
Total Cost
$199,981
Indirect Cost
Name
University of Nebraska Lincoln
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
555456995
City
Lincoln
State
NE
Country
United States
Zip Code
68588
Fan, Wenjin; Demers, Andrew James; Wan, Yanmin et al. (2018) Altered Ratio of T Follicular Helper Cells to T Follicular Regulatory Cells Correlates with Autoreactive Antibody Response in Simian Immunodeficiency Virus-Infected Rhesus Macaques. J Immunol 200:3180-3187
Petro, Thomas M; Agarkova, Irina V; Zhou, You et al. (2015) Response of Mammalian Macrophages to Challenge with the Chlorovirus Acanthocystis turfacea Chlorella Virus 1. J Virol 89:12096-107
Singh, Dhirender; McMillan, JoEllyn M; Kabanov, Alexander V et al. (2014) Bench-to-bedside translation of magnetic nanoparticles. Nanomedicine (Lond) 9:501-16
Workman, Aspen M; Jacobs, Ashley K; Vogel, Alexander J et al. (2014) Inflammation enhances IL-2 driven differentiation of cytolytic CD4 T cells. PLoS One 9:e89010
Vogel, Alexander J; Harris, Seth; Marsteller, Nathan et al. (2014) Early cytokine dysregulation and viral replication are associated with mortality during lethal influenza infection. Viral Immunol 27:214-24
Singh, Dhirender; McMillan, JoEllyn M; Liu, Xin-Ming et al. (2014) Formulation design facilitates magnetic nanoparticle delivery to diseased cells and tissues. Nanomedicine (Lond) 9:469-85
Olp, Landon N; Shea, Danielle M; White, Maxine K et al. (2013) Early childhood infection of Kaposi's sarcoma-associated herpesvirus in Zambian households: a molecular analysis. Int J Cancer 132:1182-90
Yu, Yibo; Xing, Kuiyi; Badamas, Rilwan et al. (2013) Overexpression of thioredoxin-binding protein 2 increases oxidation sensitivity and apoptosis in human lens epithelial cells. Free Radic Biol Med 57:92-104
Shibata, Annemarie; McMullen, Emily; Pham, Alex et al. (2013) Polymeric nanoparticles containing combination antiretroviral drugs for HIV type 1 treatment. AIDS Res Hum Retroviruses 29:746-54
Charlop-Powers, Zachary; Jakoncic, Jean; Gurnon, James R et al. (2012) Paramecium bursaria chlorella virus 1 encodes a polyamine acetyltransferase. J Biol Chem 287:9547-51

Showing the most recent 10 out of 17 publications