This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Clinical Core will provide OMRF COBRE investigators with unique opportunities to aid their scientific programs and to help facilitate their career development by providing a centralized process for patient-oriented research training, patient/control identification, patient/control recruitment, sample processing and access to large collections of patient/control samples with associated clinical, demographic, therapeutic and disease activity measures. The OMRF COBRE Clinical Core was established two years ago based upon the expressed need of our COBRE Junior Investigators and to date, has supported over 15 investigators in various aspects of their patient-oriented research needs. The goals of the Clinical Core are: 1) Facilitate human subject recruitment, re-contact, consent and compliance. The Clinical Core ensures that human subject recruitment, clinical assessments and sample donation procedures meet rigorous standards of good clinical practice. By performing services in informed consent, regulatory reporting, oversight of the welfare of clinical study participants, and provision of expert clinical assessments using validated disease activity instruments, the Clinical Core supports and expands the research opportunities of all COBRE investigators. 2) Provide initial processing and coding of samples provided to COBRE investigators. The Clinical Core also ensures timely, protocol-driven processing, coding and storage of human biologic samples driven by the availability of the donor, rather than the conflicting demands of a basic research laboratory. 3) Support the integration of clinical data into basic research projects. Extensive clinical, demographic, disease activity and disease damage data exists on patients enrolled with systemic rheumatic diseases. In addition, detailed information from individuals at and after vaccination is also available. The Clinical Core will also help make COBRE investigators aware of various patient and control clinical information and associated samples, which may be useful for their various projects. 4) Train COBRE investigators in human subject research and patient-oriented research design. The Clinical Core will help ensure appropriate HIPPA and human subjects training of all COBRE personnel. They will also provide guidance in the design and analysis of human studies for each project. The linking of clinical data across different COBRE projects will also be facilitated.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oklahoma Medical Research Foundation
Oklahoma City
United States
Zip Code
Waubant, Emmanuelle; Mowry, Ellen M; Krupp, Lauren et al. (2013) Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis. Mult Scler 19:891-5
Koelsch, Kristi A; Webb, Ryan; Jeffries, Matlock et al. (2013) Functional characterization of the MECP2/IRAK1 lupus risk haplotype in human T cells and a human MECP2 transgenic mouse. J Autoimmun 41:168-74
Smith, Kenneth; Muther, Jennifer J; Duke, Angie L et al. (2013) Fully human monoclonal antibodies from antibody secreting cells after vaccination with Pneumovax®23 are serotype specific and facilitate opsonophagocytosis. Immunobiology 218:745-54
Cogman, Abigail R; Chakravarty, Eliza F (2013) The case for Zostavax vaccination in systemic lupus erythematosus. Vaccine 31:3640-3
Ramos, Paula S; Oates, James C; Kamen, Diane L et al. (2013) Variable association of reactive intermediate genes with systemic lupus erythematosus in populations with different African ancestry. J Rheumatol 40:842-9
Weckerle, Corinna E; Mangale, Dorothy; Franek, Beverly S et al. (2012) Large-scale analysis of tumor necrosis factor ? levels in systemic lupus erythematosus. Arthritis Rheum 64:2947-52
Adrianto, Indra; Wang, Shaofeng; Wiley, Graham B et al. (2012) Association of two independent functional risk haplotypes in TNIP1 with systemic lupus erythematosus. Arthritis Rheum 64:3695-705
James, Judith A; Robertson, Julie M (2012) Lupus and Epstein-Barr. Curr Opin Rheumatol 24:383-8
Wang, S; Adrianto, I; Wiley, G B et al. (2012) A functional haplotype of UBE2L3 confers risk for systemic lupus erythematosus. Genes Immun 13:380-7
Niewold, Timothy B; Kelly, Jennifer A; Kariuki, Silvia N et al. (2012) IRF5 haplotypes demonstrate diverse serological associations which predict serum interferon alpha activity and explain the majority of the genetic association with systemic lupus erythematosus. Ann Rheum Dis 71:463-8

Showing the most recent 10 out of 46 publications