This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The Transgenic Animal Core Facility (TACF) serves as a central molecular biology resource for the conception and execution of new projects and provides resources to help offset the high costs of developing genetically engineered mice. The objective of the TACF is to provide unique research tools to the staff at West Virginia University, the Blanchette Rockefeller Neuroscience Institute and the National Institute of Occupational Safety and Health. The TACF currently offers transgenic production, chimera production, mouse line rederivation, mouse embryo cryopreservation and mouse embryo resuscitation. The TACF staff is available for education, assistance and consultation during all stages of project development and production.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Center Core Grants (P30)
Project #
Application #
Study Section
Special Emphasis Panel (ZRR1-RI-2 (01))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
West Virginia University
Schools of Medicine
United States
Zip Code
Hindman, Bridget; Goeckeler, Zoe; Sierros, Kostas et al. (2015) Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells. PLoS One 10:e0131920
Thapa, Dharendra; Nichols, Cody E; Lewis, Sara E et al. (2015) Transgenic overexpression of mitofilin attenuates diabetes mellitus-associated cardiac and mitochondria dysfunction. J Mol Cell Cardiol 79:212-23
Nichols, Cody E; Shepherd, Danielle L; Knuckles, Travis L et al. (2015) Cardiac and mitochondrial dysfunction following acute pulmonary exposure to mountaintop removal mining particulate matter. Am J Physiol Heart Circ Physiol 309:H2017-30
Sinha, Satyabrata; Belcastro, Marycharmain; Datta, Poppy et al. (2014) Essential role of the chaperonin CCT in rod outer segment biogenesis. Invest Ophthalmol Vis Sci 55:3775-85
Armstead, Andrea L; Arena, Christopher B; Li, Bingyun (2014) Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol Appl Pharmacol 278:1-8
Pistilli, Emidio E; Guo, Ge; Stauber, William T (2013) IL-15Rα deficiency leads to mitochondrial and myofiber differences in fast mouse muscles. Cytokine 61:41-5
Gao, Xueli; Sinha, Satyabrata; Belcastro, Marycharmain et al. (2013) Splice isoforms of phosducin-like protein control the expression of heterotrimeric G proteins. J Biol Chem 288:25760-8
Zhang, Na; Zhang, Lijuan; Qiu, Bensheng et al. (2012) Correlation of volume transfer coefficient Ktrans with histopathologic grades of gliomas. J Magn Reson Imaging 36:355-63
Marrs, Glen S; Spirou, George A (2012) Embryonic assembly of auditory circuits: spiral ganglion and brainstem. J Physiol 590:2391-408
Belcastro, Marycharmain; Song, Hongman; Sinha, Satyabrata et al. (2012) Phosphorylation of phosducin accelerates rod recovery from transducin translocation. Invest Ophthalmol Vis Sci 53:3084-91

Showing the most recent 10 out of 13 publications