Environmental factors, especially microbiota, modify genetic susceptibility to many chronic diseases. The NGRRC provides an essential resource for local, regional, national and international multidisciplinary investigators to explore the hypothess that commensal bacteria strongly influence physiologic processes in normal hosts and pathogenic inflammatory, metabolic and neoplastic responses in genetically susceptible hosts. This unit provides a resource for broadly based NIH-funded investigators to examine physiologic and pathophysiologic differences in germ-free (sterile) vs. gnotobiotic (known life, selectively colonized) vs. specific pathogen-free mice of different genetic backgrounds, to explore the functional alterations of normal vs. dysbiotic bacterial communities in murine models and human diseases, and to define the functional relevance of bacterial genes. The microbiota can be precisely manipulated by colonizing germ-free rodents with single or multiple commensal or pathogenic bacterial, viral or fungal species using isogenic wild type or genetically engineered bacterial strains. In addition, fecal transplants can be performed from murine models or human donors.
Specific aims : 1. Provide germ-free or selectively colonized wild type and mutant mice or their tissues and cells to NIH-funded investigators. 2. Derive additional GF genetically engineered mouse strains for NIH-funded investigators. 3. Support pilot studies for investigators with novel hypotheses to generate preliminary data for NIH grant applications. 4. Train personnel to develop gnotobiotic facilities in other institutions, 5. Develop innovative techniques to improve our gnotobiotic resource. We provide a unique and essential resource for a multidisciplinary group of NIH-funded investigators to study the physiologic and pathophysiologic function of normal and dysbiotic commensal bacteria, with particular emphasis on gene/environmental interactions in genetically altered mice (transgenic, knockout or spontaneously mutated) with altered physiology and disease phenotypes. In the past 4 years of funding, the NGRRC provided 8930 gnotobiotic mice to 73 investigators in 46 institutions. 62 funded and 11 submitted NIH grants (in 6 Institutes) by 52 investigators depend on gnotobiotic mice from the NGRRC.

Public Health Relevance

Altered microbiota composition (dysbiosis) is associated with a number of inflammatory (IBD, NASH, atherosclerosis), metabolic (diabetes, metabolic syndrome), neoplastic (colon cancer) and even behavioral (depression, autism) disorders. However the functional consequences of these compositional changes and the role of individual bacterial species remain unknown. Selective colonization of gnotobiotic mice with native or genetically engineered bacterial species or defined consortia can determine bacterial function, host/microbial and microbial/microbial interactions.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
2P40OD010995-11
Application #
8743594
Study Section
Special Emphasis Panel (ZRG1-BBBP-J (45))
Program Officer
Mirochnitchenko, Oleg
Project Start
2003-07-01
Project End
2019-06-30
Budget Start
2014-09-15
Budget End
2015-06-30
Support Year
11
Fiscal Year
2014
Total Cost
$576,182
Indirect Cost
$197,115
Name
University of North Carolina Chapel Hill
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Zhu, Weifei; Gregory, Jill C; Org, Elin et al. (2016) Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 165:111-24
Yan, Jing; Herzog, Jeremy W; Tsang, Kelly et al. (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A 113:E7554-E7563
Villarino, Nicolas F; LeCleir, Gary R; Denny, Joshua E et al. (2016) Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci U S A 113:2235-40
Kang, Dae Joong; Betrapally, Naga S; Ghosh, Siddhartha A et al. (2016) Gut microbiota drive the development of neuroinflammatory response in cirrhosis in mice. Hepatology 64:1232-48
Wu, Cong; Sartor, R Balfour; Huang, Kehe et al. (2016) Transient activation of mucosal effector immune responses by resident intestinal bacteria in normal hosts is regulated by interleukin-10 signalling. Immunology 148:304-14
Mottawea, Walid; Chiang, Cheng-Kang; Mühlbauer, Marcus et al. (2016) Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat Commun 7:13419
Fung, Thomas C; Bessman, Nicholas J; Hepworth, Matthew R et al. (2016) Lymphoid-Tissue-Resident Commensal Bacteria Promote Members of the IL-10 Cytokine Family to Establish Mutualism. Immunity 44:634-46
Richmond, Bradley W; Brucker, Robert M; Han, Wei et al. (2016) Airway bacteria drive a progressive COPD-like phenotype in mice with polymeric immunoglobulin receptor deficiency. Nat Commun 7:11240
Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T et al. (2015) Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J 29:1043-55
Maharshak, Nitsan; Huh, Eun Young; Paiboonrungruang, Chorlada et al. (2015) Enterococcus faecalis Gelatinase Mediates Intestinal Permeability via Protease-Activated Receptor 2. Infect Immun 83:2762-70

Showing the most recent 10 out of 34 publications