The Bloomington Drosophila Stock Center (BDSC) supports a large, worldwide community of scientists using the insect Drosophila melanogaster as a model organism for biomedical experimentation. The goals of the BDSC are to provide a collection of documented living stocks of broad value to current research, to preserve documented strains with clear future value, and to provide information and support services that promote maximal exploitation of these materials. These goals facilitate research by providing universal and rapid access to the most generally useful stocks, by preserving specialty genotypes with exceptional characteristics, and by providing information that helps researchers identify stocks appropriate to their needs. Drosophila is used extensively in studies of biological processes relevant to human health and investigations of molecular mechanisms underlying disease, because genetic technologies available to Drosophila researchers are among the most sophisticated in any multicellular organism. As the most comprehensive source of stocks for genetic experimentation with Drosophila, the BDSC is central to the success of many research projects including a large number of NIH grants. The first specific aim of this proposal is to continue acquiring, maintaining and distributing Drosophila strains and to continue developing associated information resources to meet the research needs of Drosophila scientists while maintaining and promoting excellent user support. Key to this aim is the administration and advancement of the highly successful cost recovery program that finances operational expenses from user fees. Consequently, the proposal focuses on support and development of the core management team as the most effective way to leverage the investment of NIH resources. The second specific aim is to undertake research to increase the utility of a subset of BDSC stocks which have been preserved for their distinctive mutant phenotypes. The work will experimentally map mutations in these stocks to specific transcription units in the genome sequence and will substantially increase the usefulness and relevance of the stocks to researchers investigating the functional significance of molecularly defined genes.

Public Health Relevance

The Bloomington Drosophila Stock Center is the U.S. repository and distribution center for genetically characterized strains of Drosophila melanogaster, an insect used in thousands of laboratories worldwide both to investigate fundamental biological processes and to understand cellular mechanisms related to human diseases.

Agency
National Institute of Health (NIH)
Institute
Office of The Director, National Institutes of Health (OD)
Type
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
1P40OD018537-01
Application #
8742627
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Harding, John D
Project Start
2014-08-01
Project End
2019-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Indiana University Bloomington
Department
Biology
Type
Schools of Arts and Sciences
DUNS #
City
Bloomington
State
IN
Country
United States
Zip Code
47401
Stefana, M Irina; Driscoll, Paul C; Obata, Fumiaki et al. (2017) Developmental diet regulates Drosophila lifespan via lipid autotoxins. Nat Commun 8:1384
Strube-Bloss, Martin F; Grabe, Veit; Hansson, Bill S et al. (2017) Calcium imaging revealed no modulatory effect on odor-evoked responses of the Drosophila antennal lobe by two populations of inhibitory local interneurons. Sci Rep 7:7854
Bhattacharya, Abhishek; Li, Ke; Quiquand, Manon et al. (2017) The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins. Dev Biol 431:309-320
de la Flor, Miguel; Chen, Lijian; Manson-Bishop, Claire et al. (2017) Drosophila increase exploration after visually detecting predators. PLoS One 12:e0180749
Qiu, Yijun; Gilmour, David S (2017) Identification of Regions in the Spt5 Subunit of DRB Sensitivity-inducing Factor (DSIF) That Are Involved in Promoter-proximal Pausing. J Biol Chem 292:5555-5570
Pfaff, Daniel H; Fleming, Thomas; Nawroth, Peter et al. (2017) Evidence Against a Role for the Parkinsonism-associated Protein DJ-1 in Methylglyoxal Detoxification. J Biol Chem 292:685-690
Paik, Donggi; Monahan, Amanda; Caffrey, Daniel R et al. (2017) SLC46 Family Transporters Facilitate Cytosolic Innate Immune Recognition of Monomeric Peptidoglycans. J Immunol 199:263-270
Ganguly, Anindya; Pang, Lisa; Duong, Vi-Khoi et al. (2017) A Molecular and Cellular Context-Dependent Role for Ir76b in Detection of Amino Acid Taste. Cell Rep 18:737-750
McCluskey, Kevin; Barker, Katharine B; Barton, Hazel A et al. (2017) The U.S. Culture Collection Network Responding to the Requirements of the Nagoya Protocol on Access and Benefit Sharing. MBio 8:
Casey, Amanda K; Moehlman, Andrew T; Zhang, Junmei et al. (2017) Fic-mediated deAMPylation is not dependent on homodimerization and rescues toxic AMPylation in flies. J Biol Chem 292:21193-21204

Showing the most recent 10 out of 319 publications