The Center for Neuroanatomy with Neurotropic Viruses (CNNV) was funded in 2004 to address the increasing needs of the research community for access to the use of viral transneuronal tracing tracers. This approach is the most widely used method to gain a circuit perspective on the functional architecture of the nervous system at a cellular level. The CNNV has become an integral resource for investigators by providing well-characterized reagents, guidance in the use of the method and translational support for successful grant applications. This application for continued funding of the CNNV is founded on the same goals and rationale advanced in the original submission. Specifically we propose to maintain a state-of-the- art National Resource that a) serves as a technical and intellectual resource for those interested in using the method, b) develops improved transneuronal tracing tools that permit more targeted dissection of the functional architecture of neural circuits, c) serves as a repository for well-characterized reagents essential to application of the method, and d) supports and stimulates the research enterprise of the NIH and other research agencies by providing sophisticated tools that enhance and expand the capabilities of individual investigators. The belief that this can best be achieved through the CNNV Is based upon the following assertions. First, by providing well-characterized reagents and essential expertise, the CNNV substantially reduces barriers that investigators experience in seeking access to the use of viruses as transneuronal tracers. Second, the unique combination of multidisciplinary expertise available through the CNNV provides the focus and platform for more rapid, targeted and Informed technology development. Third, the existence of unique resources and facilities within core laboratories of the CNNV greatly expands access to the technology. In this application we provide objective evidence supporting each of these assertions and demonstrate that the CNNV has rapidly evolved into a critical National Resource for the neuroscience research community. We also highlight the accomplishments of the Center and provide a plan for further improving the service and technology functions of the CNNV.

Public Health Relevance

(provided by applicant): The ability to treat disease and injury of the brain depends upon developing a fundamental understanding of the complex neural circuits that comprise the central nervous system. The use of neurotropic viruses as transneuronal tracers provides a unique and powerful tool that reveals the functional organization of these complex circuits. The CNNV is a national resource that provides and develops the reagents for this purpose.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Animal (Mammalian and Nonmammalian) Model, and Animal and Biological Material Resource Grants (P40)
Project #
Application #
Study Section
National Center for Research Resources Initial Review Group (RIRG)
Program Officer
O'Neill, Raymond R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
Schools of Medicine
United States
Zip Code
Nam, H; Kerman, I A (2016) Distribution of catecholaminergic presympathetic-premotor neurons in the rat lower brainstem. Neuroscience 324:430-45
Rosario, Wilfredo; Singh, Inderroop; Wautlet, Arnaud et al. (2016) The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes 65:2711-23
Anwar, Imran J; Miyata, Kayoko; Zsombok, Andrea (2016) Brain stem as a target site for the metabolic side effects of olanzapine. J Neurophysiol 115:1389-98
Carpenter, John E; Clayton, Amy C; Halling, Kevin C et al. (2016) Defensive Perimeter in the Central Nervous System: Predominance of Astrocytes and Astrogliosis during Recovery from Varicella-Zoster Virus Encephalitis. J Virol 90:379-91
Davis, Benjamin M; Rall, Glenn F; Schnell, Matthias J (2015) Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2:451-71
Wojaczynski, Gregory J; Engel, Esteban A; Steren, Karina E et al. (2015) The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct Funct 220:1395-420
Pfaller, Christian K; Cattaneo, Roberto; Schnell, Matthias J (2015) Reverse genetics of Mononegavirales: How they work, new vaccines, and new cancer therapeutics. Virology 479-480:331-44
Parsons, Lance R; Tafuri, Yolanda R; Shreve, Jacob T et al. (2015) Rapid genome assembly and comparison decode intrastrain variation in human alphaherpesviruses. MBio 6:
Hogue, Ian B; Bosse, Jens B; Engel, Esteban A et al. (2015) Fluorescent Protein Approaches in Alpha Herpesvirus Research. Viruses 7:5933-61
Taylor, Matthew P; Enquist, Lynn W (2015) Axonal spread of neuroinvasive viral infections. Trends Microbiol 23:283-8

Showing the most recent 10 out of 59 publications