Biomedical Simulations Resources (BMSR) at the University of Southern California is dedicated to the advancement of the state-of-the-art in biomedical modeling and simulation through Technological Research and Development (Core) and Collaborative Research projects. It also seeks the dissemination of this knowledge and related software through Service, Training and Dissemination activities aimed at the biomedical community at large. The latter activities include distribution and support of modeling/simulation software, as well as the organization of related short-courses and workshops in addition to publication of research volumes and publications in open literature. The emphasis of the Core Research projects is on development of advanced modeling and simulation methodologies and their application to biomedical systems for the advancement of scientific knowledge and the improvement of clinical practice. The challenging cases of nonlinear dynamic systems, sparse data modeling, closed-loop physiological modeling/control and modeling of multi-variable complex systems, constitute the focal points of this effort. The methodologies developed by the Core projects are at the cutting-edge of research in this area and are made possible by the aggregation of human resources and computing facilities within the BMSR. Pivotal applications of these methodologies cover a variety of physiological domains, including pharmacokinetics, neural/cognitive, neurovascular, neurological, cardio-vascular, cardio-respiratory, hemodynamic, metabolic and endocrine systems. Additional applications, serving as testing grounds and dissemination means for the developed methodologies, take place in our Collaborative projects. Fully developed and tested methodologies are implemented in software packages and made available to the biomedical community at large free of charge. The Service, Training and Dissemination activities of the BMSR seek to promote the dissemination of knowledge and technology in the area of biomedical modeling and simulation in order to create a productive and interactive community of investigators that can provide the multi-disciplinary scientific/technological impetus needed to transcend the barriers imposed by the complexity of the subject. The ultimate objective of the BMSR is to facilitate the development and broad use of novel modeling and simulation methodology/technology for scientific advancement and improvement of our health care system. A particular thrust of the proposed five-year program is our translational work that seeks to transfer our novel methodology/technology to the clinical setting as the capstone achievement of the BMSR.

Public Health Relevance

The use of advanced methods of data analysis and system modeling is critical for the generation of new scientific knowledge and holds the promise for improved clinical diagnosis and novel treatments, as well as for quantitative assessment of the effects of pharmaceutical or interventional therapies. Among the key diagnostic tools are model-based functional biomarkers that offer novel means for clinical diagnosis of increased sensitivity and specificity at modest cost with great potential impact on our health care system.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-C (M2))
Program Officer
Peng, Grace
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Biomedical Engineering
Schools of Engineering
Los Angeles
United States
Zip Code
Wu, Ziyue; Kim, Yoon-Chul; Khoo, Michael C K et al. (2014) Evaluation of an independent linear model for acoustic noise on a conventional MRI scanner and implications for acoustic noise reduction. Magn Reson Med 71:1613-20
Zhang, Yaping; Hsu, Cheng-Pang; Lu, Jian-Feng et al. (2014) FLT3 and CDK4/6 inhibitors: signaling mechanisms and tumor burden in subcutaneous and orthotopic mouse models of acute myeloid leukemia. J Pharmacokinet Pharmacodyn 41:675-91
Marmarelis, Vasilis Z; Shin, Dae C; Orme, Melissa et al. (2014) Time-varying modeling of cerebral hemodynamics. IEEE Trans Biomed Eng 61:694-704
Hajjar, Ihab; Marmerelis, Vasilis; Shin, Dae C et al. (2014) Assessment of cerebrovascular reactivity during resting state breathing and its correlation with cognitive function in hypertension. Cerebrovasc Dis 38:10-6
Kim, Yoon-Chul; Lebel, R Marc; Wu, Ziyue et al. (2014) Real-time 3D magnetic resonance imaging of the pharyngeal airway in sleep apnea. Magn Reson Med 71:1501-10
Song, Dong; Harway, Madhuri; Marmarelis, Vasilis Z et al. (2014) Extraction and restoration of hippocampal spatial memories with non-linear dynamical modeling. Front Syst Neurosci 8:97
Marmarelis, V Z; Shin, D C; Song, D et al. (2014) On parsing the neural code in the prefrontal cortex of primates using principal dynamic modes. J Comput Neurosci 36:321-37
Marmarelis, V Z; Shin, D C; Orme, M E et al. (2014) Model-based physiomarkers of cerebral hemodynamics in patients with mild cognitive impairment. Med Eng Phys 36:628-37
Zhou, Alyssa; Pacini, Giovanni; Ahren, Bo et al. (2014) Glucagon clearance is regulated by nutritional state: evidence from experimental studies in mice. Diabetologia 57:801-8
Meel-van den Abeelen, Aisha S S; Simpson, David M; Wang, Lotte J Y et al. (2014) Between-centre variability in transfer function analysis, a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study. Med Eng Phys 36:620-7

Showing the most recent 10 out of 71 publications