This is a competitive renewal application for a grant that supports the Biotechnology Resource for NMR Molecular Imaging of Proteins at the University of California, San Diego. The BTRC develops and applies NMR spectroscopy for the study of proteins in biological supermolecular structures, such as virus particles and membranes. Successful applications of nuclear magnetic resonance (NMR) spectroscopy to proteins have been largely limited to the same class of soluble, globular proteins that are amenable to X-ray crystallography. However, methods that work well with globular proteins typically work poorly with membrane proteins in their native crystalline phospholipid bilayer environment. It is this technology gap that we seek to fill. The BTRC is highly focused on advancing the technology for high-resolution solid-state NMR spectroscopy so that it can be used in laboratories throughout the World to determine the structure of membrane proteins under near-native conditions. It is this unique technology that we will make available to the Nation's biomedical research community through our Collaborative (CP) and Service (SP) research projects. Membrane proteins are important targets for structural studies because they represent about one-third of the proteins expressed from the genomes of all organisms and have many unique roles, including as drug receptors where they have their greatest biomedical roles. Primary targets for the research at the BTRC include G-protein coupled receptors (GPCRs), which are the largest class of membrane proteins and of drug receptors. Information about their structures will help guide the development of new drugs for a wide range of diseases, ranging from cancer to mental illness.

Public Health Relevance

The technology developed at the BTRC will accelerate the development of drugs against a wide range of diseases. The information gained in the studies carried out with this technology will disclose the details of how drugs bind to thei molecular partners, which are the actual players the affect diseases. This information will help in the discovery of new drugs.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-E (M3))
Program Officer
Liu, Christina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Schools of Arts and Sciences
La Jolla
United States
Zip Code
Tian, Ye; Schwieters, Charles D; Opella, Stanley J et al. (2017) High quality NMR structures: a new force field with implicit water and membrane solvation for Xplor-NIH. J Biomol NMR 67:35-49
Opella, Stanley J; Marassi, Francesca M (2017) Applications of NMR to membrane proteins. Arch Biochem Biophys 628:92-101
Dutta, Samit Kumar; Yao, Yong; Marassi, Francesca M (2017) Structural Insights into the Yersinia pestis Outer Membrane Protein Ail in Lipid Bilayers. J Phys Chem B 121:7561-7570
Yao, Yong; Dutta, Samit Kumar; Park, Sang Ho et al. (2017) High resolution solid-state NMR spectroscopy of the Yersinia pestis outer membrane protein Ail in lipid membranes. J Biomol NMR 67:179-190
Das, Bibhuti B; Opella, Stanley J (2016) Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR. J Magn Reson 262:20-26
Yao, Yong; Nisan, Danielle; Fujimoto, Lynn M et al. (2016) Characterization of the membrane-inserted C-terminus of cytoprotective BCL-XL. Protein Expr Purif 122:56-63
Young, Robert P; Caulkins, Bethany G; Borchardt, Dan et al. (2016) Solution-State (17)O?Quadrupole Central-Transition NMR Spectroscopy in the Active Site of Tryptophan Synthase. Angew Chem Int Ed Engl 55:1350-4
Gong, Xiao-Min; Ding, Yi; Yu, Jinghua et al. (2015) Structure of the Na,K-ATPase regulatory protein FXYD2b in micelles: implications for membrane-water interfacial arginines. Biochim Biophys Acta 1848:299-306
Das, Bibhuti B; Park, Sang Ho; Opella, Stanley J (2015) Membrane protein structure from rotational diffusion. Biochim Biophys Acta 1848:229-45
Lewinski, Mary K; Jafari, Moein; Zhang, Hua et al. (2015) Membrane Anchoring by a C-terminal Tryptophan Enables HIV-1 Vpu to Displace Bone Marrow Stromal Antigen 2 (BST2) from Sites of Viral Assembly. J Biol Chem 290:10919-33

Showing the most recent 10 out of 138 publications