The objectives of the Center for Gamma-Ray Imaging are to develop advanced gamma-ray detectors and Imaging systems, to push the limits of spatial and temporal resolution in SPECT and PET, and to make state-of-the-art technology available to our collaborators and to the biomedical research community. Much of the emphasis Is on basic research with animal models, but there are many possibilities for translating the technology and the results of the collaborative research into clinical practice. We strive to integrate the components of the P41 mechanism (core technology development, collaborative research, service, dissemination and training) into a comprehensive program that addresses all aspects of gamma-ray imaging, including the radiopharmaceutical, image formation and detection, data acquisition and processing and the final biomedical application. The core technology projects include development of new gamma-ray and charged-particle detectors with high sensitivity and high spatial and temporal resolution;design and construction of new imaging systems incorporating sophisticated list-mode data-acquisition electronics;rigorous task-based evaluation and optimization of imaging systems and algorithms;design and analysis of adaptive and multimodality systems;and development of new animal models and image-analysis methods for molecular imaging. Collaborative research includes projects in cancer diagnosis and therapy, neurological and cardiovascular disease, stem cells, image science in nuclear medicine, and imaging biomarkers. Dissemination includes supplying imaging hardware and software to our collaborators, as well as workshops and a web site for traditional dissemination of information. Training includes both formal short courses and hands-on training in Tucson for our collaborators. Service includes performing routine animal studies, testing and calibrating detectors and detector materials, and providing advice on image quality.

Public Health Relevance

The instruments and methods developed by the Center will provide better tools for investigators studying preclinical animal models of important diseases such as cancer, cardiovascular disease and stroke, and neurologic disorders. As the methods become incorporated into clinical imaging systems, they will have a direct impact on improved diagnosis and management of these disorders.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-J (40))
Program Officer
Sastre, Antonio
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Schools of Medicine
United States
Zip Code
Dickinson, Sally E; Janda, Jaroslav; Criswell, Jane et al. (2016) Inhibition of Akt Enhances the Chemopreventive Effects of Topical Rapamycin in Mouse Skin. Cancer Prev Res (Phila) 9:215-24
Barrett, Harrison H; Alberts, David S; Woolfenden, James M et al. (2016) Therapy operating characteristic curves: tools for precision chemotherapy. J Med Imaging (Bellingham) 3:023502
Clarkson, Eric; Barrett, Harrison H (2016) Characteristic functionals in imaging and image-quality assessment: tutorial. J Opt Soc Am A Opt Image Sci Vis 33:1464-75
Clarkson, Eric; Cushing, Johnathan B (2016) Shannon information for joint estimation/detection tasks and complex imaging systems. J Opt Soc Am A Opt Image Sci Vis 33:286-92
Liu, Zhonglin; Larsen, Brandon T; Lerman, Lilach O et al. (2016) Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin. Nucl Med Biol 43:496-505
Liu, Zhonglin; Gray, Brian D; Barber, Christy et al. (2016) Characterization of TCP-1 probes for molecular imaging of colon cancer. J Control Release 239:223-30
Bora, Vaibhav; Barrett, Harrison H; Fastje, David et al. (2016) Estimation of Fano factor in inorganic scintillators. Nucl Instrum Methods Phys Res A 805:72-86
Barrett, Harrison H; Alberts, David S; Woolfenden, James M et al. (2015) Quantifying and Reducing Uncertainties in Cancer Therapy. Proc SPIE Int Soc Opt Eng 9412:
Barrett, Harrison H; Myers, Kyle J; Hoeschen, Christoph et al. (2015) Task-based measures of image quality and their relation to radiation dose and patient risk. Phys Med Biol 60:R1-75
Clarkson, Eric; Cushing, Johnathan B (2015) Shannon information and ROC analysis in imaging. J Opt Soc Am A Opt Image Sci Vis 32:1288-301

Showing the most recent 10 out of 124 publications