This is the revision of the last renewal of a technology resource grant (P41) entitled "A Resource on Medical Ultrasonic Transducer Technology". It was funded at Penn State University in 1997 to pursue innovative research in high frequency (HF) ultrasonic transducers and arrays as well as to serve the medical ultrasound community who has a need for such transducers and arrays. In 2002 the Resource was moved to USC and renewed in 2005. In the past 5 years, significant progress has been made in transducer materials, HF single element transducers and arrays, and imaging electronics, resulting in 101 refereed publications and 10 patents or patent disclosures. In addition, a new initiative on studying the feasibility of ultrasound microbeams defined as ultrasound beams at frequencies higher than 200 MHz was launched. Novel piezoelectric thin/thick films have been developed allowing ultrahigh frequency (UHF) transducers (200 MHz -1 GHz) to be designed and built. HF linear arrays at 30 MHz have been improved to consist of now 256 elements and a curved linear array at 20 MHz for imaging posterior side of the eye has been developed. Prototype real-time analog and digital HF imaging platforms are fully functional. Exploratory experiments on ultrasound microbeam for trapping cells, cell sorting, cellular mechanotransduction, and acoustic radiation force imaging of microstructures were carried out, demonstrating that exciting opportunities exist for ultrasound to play a more significant role in the promising field of cellulr bioengineering. There have been 17 collaborative projects and 8 service projects. In next grant period, there will be four internal core projects: (I) hovel transducer materials and UHF transducers (II) HF arrays and imaging platforms, (III) ultrasound microbeam, and (IV) novel piezoelectric materials and HF material characterization along with 15 collaborative projects and 4 service projects. The major thrusts of the core research will be (1) to develop UHF single element transducers for microbeam applications, (2) to develop a 35 MHz phased array and imaging platform for cardiac imaging in small animals, (3) to develop linear arrays at 50 MHz and higher and curved linear arrays in the 15 - 20 MHz range, and (4) to exploit cellular applications of ultrasound microbeams.

Public Health Relevance

This project is focused at developing ultrasonic devices at a frequency much higher than that commonly used in clinical scanning. They can be used to image the eye, skin and small animals. They can also be used to interrogate and manipulate cells if the frequency is increased to beyond 200 MHz.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZEB1-OSR-C (M2))
Program Officer
Liu, Christina
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Southern California
Biomedical Engineering
Schools of Engineering
Los Angeles
United States
Zip Code
Huo, Xiaoqing; Zheng, Limei; Zhang, Shujun et al. (2014) Growth and properties of Li, Ta modified (K,Na)NbO3 lead-free piezoelectric single crystals. Phys Status Solidi Rapid Res Lett 8:86-90
Li, Xiang; Ma, Teng; Tian, Jian et al. (2014) Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging. IEEE Trans Ultrason Ferroelectr Freq Control 61:1171-8
Lee, Juhyun; Cao, Hung; Kang, Bong Jin et al. (2014) Hemodynamics and ventricular function in a zebrafish model of injury and repair. Zebrafish 11:447-54
Choi, Hojong; Yang, Hao-Chung; Shung, K Kirk (2014) Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems. Ultrasonics 54:754-8
Zhou, Zhuhuang; Huang, Chih-Chung; Shung, K Kirk et al. (2014) Entropic imaging of cataract lens: an in vitro study. PLoS One 9:e96195
Sun, Enwei; Cao, Wenwu (2014) Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog Mater Sci 65:124-210
Ma, Teng; Zhang, Xiangyang; Chiu, Chi Tat et al. (2014) Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy. J Biomed Opt 19:16015
Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph et al. (2014) High temperature, high power piezoelectric composite transducers. Sensors (Basel) 14:14526-52
Chen, Yen-Chu; Lin, Yi-Hsun; Wang, Shyh-Hau et al. (2014) Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound. Ultrasonics 54:177-86
Chen, Ruimin; Cabrera-Munoz, Nestor E; Lam, Kwok Ho et al. (2014) PMN-PT single-crystal high-frequency kerfless phased array. IEEE Trans Ultrason Ferroelectr Freq Control 61:1033-41

Showing the most recent 10 out of 146 publications