Hyperpolarized MRI using Dynamic Nuclear Polarization (DNP) is a powerful new imaging technique which uses specialized instrumentation to provide signal enhancements of over 5-orders of magnitude for 13C enriched compounds. The resulting hyperpolarized solution then can be injected in a MR scanner to detect not only the uptake of the targeted molecule but also its metabolic products in vivo using rapid 13C MR acquisitions. Since hyperpolarized 13C MR spectroscopic imaging encodes chemical as well as spatial information, this new molecular imaging technique allows the simultaneous detection of multiple biologic compounds and metabolic products. This extraordinary new technique has the potential to become a major new MR metabolic imaging technique by providing valuable new information on previously-inaccessible aspects of biological processes by detecting endogenous, nontoxic 13C-labeled probes that can monitor enzymatic conversions through key biochemical pathways. Hyperpolarized 13C MR has generated great interest in the imaging community and is becoming increasingly widespread with Oxford Instruments recently reporting that they have sold 37 commercial HyperSense DNP polarizers of which 10 are focused on in vitro studies and 27 for in vivo studies (since the first installed in 2006 at UCSF). There are an additional 5+ prototype, custom-built DNP polarizers being used in university preclinical research, bringing the total to ~30 sites thus far. With the increasing interest and number of DNP polarizers, we feel it is timely and beneficial to this emerging field to establish a Hyperpolarized MRI Technology Resource Center to develop, investigate, and disseminate new hyperpolarized MR techniques, new 13C agents and specialized analysis open-source software for data reconstruction and interpretation. The Technology Research &Development projects will leverage the extensive DNP facilities and experience of the project leaders to develop improved, robust hyperpolarized MRI methods. These technology developments will be driven by Collaborative Projects led by outstanding clinical and basic scientists who aim to use hyperpolarized 13C MRI to accomplish the scientific goals of their funded research. These technical developments will also be disseminated to the Service Project investigators for extramural feedback and then widely to the scientific community via a dedicated website and onsite training. This center will provide state-of-the-art training in this new metabolic imaging field and sponsor a yearly symposium focused on hyperpolarized MR technology development.

Public Health Relevance

Hyperpolarized MR is a new metabolic imaging method to monitor enzymatic conversions through key biochemical pathways previously inaccessible. Therefore this technology presents an opportunity to dramatically improve our ability to identify and understand human disease, and to ultimately translate these techniques into the clinic for improved, more individualized patient care.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB013598-04
Application #
8690844
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Liu, Guoying
Project Start
2011-08-01
Project End
2016-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
City
San Francisco
State
CA
Country
United States
Zip Code
94143
Reed, Galen D; von Morze, Cornelius; Verkman, Alan S et al. (2016) Imaging Renal Urea Handling in Rats at Millimeter Resolution using Hyperpolarized Magnetic Resonance Relaxometry. Tomography 2:125-135
Shang, Hong; Larson, Peder E Z; Kerr, Adam et al. (2016) Multiband RF pulses with improved performance via convex optimization. J Magn Reson 262:81-90
Feng, Yesu; Gordon, Jeremy W; Shin, Peter J et al. (2016) Development and testing of hyperpolarized (13)C MR calibrationless parallel imaging. J Magn Reson 262:1-7
Gordon, Jeremy W; Milshteyn, Eugene; Marco-Rius, Irene et al. (2016) Mis-estimation and bias of hyperpolarized apparent diffusion coefficient measurements due to slice profile effects. Magn Reson Med :
von Morze, Cornelius; Bok, Robert A; Ohliger, Michael A et al. (2016) Hyperpolarized [(13) C]ketobutyrate, a molecular analog of pyruvate with modified specificity for LDH isoforms. Magn Reson Med 75:1894-900
Park, I; Nelson, S J; Talbott, J F (2016) In Vivo Monitoring of Rat Spinal Cord Metabolism Using Hyperpolarized Carbon-13 MR Spectroscopic Imaging. AJNR Am J Neuroradiol 37:2407-2409
Maidens, John; Gordon, Jeremy W; Arcak, Murat et al. (2016) Optimizing Flip Angles for Metabolic Rate Estimation in Hyperpolarized Carbon-13 MRI. IEEE Trans Med Imaging 35:2403-2412
Park, Ilwoo; von Morze, Cornelius; Lupo, Janine M et al. (2016) Investigating tumor perfusion by hyperpolarized (13) C MRI with comparison to conventional gadolinium contrast-enhanced MRI and pathology in orthotopic human GBM xenografts. Magn Reson Med :
von Morze, Cornelius; Chang, Gene-Yuan; Larson, Peder E Z et al. (2016) Detection of localized changes in the metabolism of hyperpolarized gluconeogenic precursors (13) C-lactate and (13) C-pyruvate in kidney and liver. Magn Reson Med :
Chen, Yiran; Kim, Hosung; Bok, Robert et al. (2016) Pyruvate to Lactate Metabolic Changes during Neurodevelopment Measured Dynamically Using Hyperpolarized 13C Imaging in Juvenile Murine Brain. Dev Neurosci 38:34-40

Showing the most recent 10 out of 85 publications