The Laser Microbeam and Medical Program (LAMMP) is a NIH Biomedical Technology Resource Center dedicated to the use of lasers and optics in biology and medicine. LAMMP is located within the Beckman Laser Institute (BLI), an interdisciplinary biomedical research, teaching, and clinical facility at the University of California, Irvine. Overall resource objectives are to promote a well-balanced Center with activities in technological research and development, collaborative research, service, training, and dissemination. In this sixth renewal application of LAMMP, we continue to emphasize our unique capabilities to facilitate "translational" research by rapidly moving basic science and technology discoveries from "blackboard to benchtop to bedside". This is accomplished by combining state of the art optical technologies with specialized resource facilities for cell and tissue engineering, histopathology, pre-clinical animal models, and clinical care. LAMMP provides both Microscopy and Microbeam Technologies (MMT) for high-resolution functional imaging and manipulation of living cells and tissues and Medical Translational Technologies (MTT) for non- and minimally-invasive monitoring, treating, and imaging pre-clinical animal models and human subjects. In addition, we propose to establish a new core, Virtual Photonics Technologies (VPT) for developing computational models and methods that advance the performance of biophotonic technologies, and enhance the information content derived from optical measurements. Seven Technology Research and Development projects are proposed that will result in the fabrication of several new instruments as well as the creation of multi-functional software. These projects build on our longstanding expertise in light-tissue interaction models and Biophotonics technologies, including laser microbeams, non-linear microscopy, optical coherence tomography, spatial/temporal modulation methods, and diffuse optics. LAMMP cores contain complementary technologies that are capable of quantitatively characterizing, imaging, and perturbing structure and biochemical function in cells and tissues with scalable resolution and depth sensitivity ranging from micrometers to centimeters. Collaborative studies are proposed that advance these technologies so they become widely-available, enabling methods in Biology and Medicine. Throughout the grant we emphasize the relevance of LAMMP technologies to Medicine in areas such as cancer, cardiovascular disease, metabolic syndrome, and neurologic function, as well as fundamental biological process, such as mechano-transduction, wound repair, angiogenesis, fibrosis, and cell death.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Program Officer
Conroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Medicine
United States
Zip Code
Ganesan, Goutham; Cotter, Joshua A; Reuland, Warren et al. (2015) Effect of blood flow restriction on tissue oxygenation during knee extension. Med Sci Sports Exerc 47:185-93
Lin, Alexander J; Liu, Gangjun; Castello, Nicholas A et al. (2014) Optical imaging in an Alzheimer's mouse model reveals amyloid-?-dependent vascular impairment. Neurophotonics 1:011005
Khatibzadeh, Nima; Stilgoe, Alexander B; Bui, Ann A M et al. (2014) Determination of motility forces on isolated chromosomes with laser tweezers. Sci Rep 4:6866
Yau, Amy Y Y; Manuel, Cyrus; Hussain, Syed F et al. (2014) In vivo needle-based electromechanical reshaping of pinnae: New Zealand White rabbit model. JAMA Facial Plast Surg 16:245-52
Robertson, Claire; Heidari, Andrew E; Chen, Zhongping et al. (2014) Mechanical analysis of arterial plaques in native geometry with OCT wall motion analysis. J Biomech 47:755-8
Regan, Caitlin; Ramirez-San-Juan, Julio C; Choi, Bernard (2014) Photothermal laser speckle imaging. Opt Lett 39:5006-9
Balu, Mihaela; Kelly, Kristen M; Zachary, Christopher B et al. (2014) Distinguishing between benign and malignant melanocytic nevi by in vivo multiphoton microscopy. Cancer Res 74:2688-97
Li, Jiawen; Li, Xiang; Mohar, Dilbahar et al. (2014) Integrated IVUS-OCT for real-time imaging of coronary atherosclerosis. JACC Cardiovasc Imaging 7:101-3
Qi, Wenjuan; Li, Rui; Ma, Teng et al. (2014) Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer. Appl Phys Lett 104:123702
Zamora, Genesis; Wang, Frederick; Sun, Chung-Ho et al. (2014) Photochemical internalization-mediated nonviral gene transfection: polyamine core-shell nanoparticles as gene carrier. J Biomed Opt 19:105009

Showing the most recent 10 out of 68 publications