The overall long-term goal ofthe Center for Magnetic Resonance and Optical Imaging (CMROI) is to develop cutting edge core Magnetic Resonance and Optical imaging technologies in support of the biomedical research community at the University of Pennsylvania and other institutions across the country to address clinical problems and to further the fundamental understanding of biophysical, physiological, structural, and functional properties of biological systems. Based on the driving biomedical projects identified by our collaborators, we developed the following four broad areas of Technological Research and Development (TR&D): The first TR&D project deals with the development of novel rotating frame MRI techniques for studying the structural, biochemical and metabolic aspects of cartilage, brain, and tumors, with direct application to Arthritis, Alzheimer's Disease and cancer. The second TR&D focuses on the development of quantitative perfusion MRI at ultra high field {7T) scanners, real time fMRI as well as methods for integrating perfusion MRI with optical imaging for the study of stroke and neurodegeneration. The 3rd TR&D develops novel image reconstruction strategies to overcome artifacts due to motion and to quantify the rapid dynamics of contrast agents in cancer and to acquire dynamic hyperpolarized gas MRI of the lungs. The final TR&D develops multi-modal state-of-the-art instrumentation combining optical imaging and MRI, and develops diffuse correlation spectroscopy (DCS) for blood flow monitoring/imaging of diseased tissues in stroke and breast cancer. The Resource emphasizes clinical translation of its TR&D work and actively collaborates on ongoing research projects. It provides service in the use of state-of-the-art MRI including a whole-body 7T research MRI scanner, optical imaging and hyperpolarized gas imaging systems, and software resources developed by the Resource. The Resource also maintains an extensive training and dissemination program in biomedical imaging and a dedicated wiki-based website. The Resource within the auspices of the Radiology department at the University of Pennsylvania remains committed to intellectual interchange and the interdisciplinary pursuit of basic and clinical medicine.

Public Health Relevance

Imaging technologies developed by the resource will have substantial impact on fundamental understanding, early diagnosis, and development of novel therapies for several diseases including Alzheimer's Disease, Arthritis, Cancer, Stroke, and chronic obstructive pulmonary disease (COPD).

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015893-30
Application #
8666550
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Program Officer
Liu, Christina
Project Start
1997-09-30
Project End
2015-05-31
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
30
Fiscal Year
2014
Total Cost
$1,522,787
Indirect Cost
$569,050
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Ouyang, Minhui; Liu, Peiying; Jeon, Tina et al. (2017) Heterogeneous increases of regional cerebral blood flow during preterm brain development: Preliminary assessment with pseudo-continuous arterial spin labeled perfusion MRI. Neuroimage 147:233-242
Dolui, Sudipto; Vidorreta, Marta; Wang, Ze et al. (2017) Comparison of PASL, PCASL, and background-suppressed 3D PCASL in mild cognitive impairment. Hum Brain Mapp 38:5260-5273
Cai, Kejia; Tain, Rong-Wen; Zhou, Xiaohong Joe et al. (2017) Creatine CEST MRI for Differentiating Gliomas with Different Degrees of Aggressiveness. Mol Imaging Biol 19:225-232
Pang, Henry; Bow, Cora; Cheung, Jason Pui Yin et al. (2017) The UTE Disc Sign on MRI: A Novel Imaging Biomarker Associated With Degenerative Spine Changes, Low Back Pain and Disability. Spine (Phila Pa 1976) :
Cochran, J M; Chung, S H; Leproux, A et al. (2017) Longitudinal optical monitoring of blood flow in breast tumors during neoadjuvant chemotherapy. Phys Med Biol 62:4637-4653
Moon, Lily; Frederick, David W; Baur, Joseph A et al. (2017) Imaging Redox State in Mouse Muscles of Different Ages. Adv Exp Med Biol 977:51-57
Crescenzi, Rachelle; DeBrosse, Catherine; Nanga, Ravi P R et al. (2017) Longitudinal imaging reveals subhippocampal dynamics in glutamate levels associated with histopathologic events in a mouse model of tauopathy and healthy mice. Hippocampus 27:285-302
Roalf, D R; Nanga, R P R; Rupert, P E et al. (2017) Glutamate imaging (GluCEST) reveals lower brain GluCEST contrast in patients on the psychosis spectrum. Mol Psychiatry 22:1298-1305
Shanmugan, Sheila; Loughead, James; Nanga, Ravi Prakash Reddy et al. (2017) Lisdexamfetamine Effects on Executive Activation and Neurochemistry in Menopausal Women with Executive Function Difficulties. Neuropsychopharmacology 42:437-445
Kogan, Feliks; Stafford, Randall B; Englund, Erin K et al. (2017) Perfusion has no effect on the in vivo CEST effect from Cr (CrCEST) in skeletal muscle. NMR Biomed 30:

Showing the most recent 10 out of 107 publications