In this application we seek renewed support for our continued efforts to develop innovative neuroimaging technologies within the highly integrated multimodal framework of our P41 Regional Resource, the Center for Functional Neuroimaging Technologies (CFNT). The overarching goal of the CFNT is to provide technology resources to more closely examine and better understand the human brain in both health and disease. To this end, we seek to develop new techniques and advance existing technologies for acquisition and analysis of functionally specific images of the working brain, with unprecedented physiological precision and spatiotemporal resolution. To accomplish this goal, we propose to continue our core and collaborative research, service, training and dissemination activities. Central to this effort are our four core technology research and development projects, designed to improve and extend techniques for non-invasive magnetic resonance image analysis (Project 1) and acquisition (Project 2), electromagnetic source imaging (Project 3), and optical neuroimaging (Project 4). New for this cycle, an exciting new technology, integrated PET/MRI, will be explored within several of these projects. The Resource provides an essential interactive environment, within which an interdisciplinary team of highly skilled scientists, engineers, and clinicians with diverse expertise in multiple modalities and disciplines collaborate closely with our Center to advance the technical capabilities of the Center, while reciprocally enhancing their own research by applying the tools we co-develop. Finally, the Resource will continue to support service use of the Center's facilities by neuroscientists throughout the country, provide extensive training opportunities for students, fellows, and staff scientists, and seek to advance the field of brain mapping through active dissemination of new knowledge and technology.

Public Health Relevance

The P41 Resource, by actively developing cutting-edge neuroimaging technologies, conducting collaborative research involving applications of these technologies, and extending them for service use to the broader neuroscientific research community, has extensive potential to help shape the basic neuroscience and translational research landscape. Ultimately, this work may thus facilitate the development of new therapeutic advances for an astounding array of neurological and psychiatric diseases.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Program Officer
Liu, Guoying
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Sitnikova, Tatiana A; Hughes, Jeremy W; Ahlfors, Seppo P et al. (2018) Short timescale abnormalities in the states of spontaneous synchrony in the functional neural networks in Alzheimer's disease. Neuroimage Clin 20:128-152
Dinh, Christoph; Esch, Lorenz; Rühle, Johannes et al. (2018) Real-Time Clustered Multiple Signal Classification (RTC-MUSIC). Brain Topogr 31:125-128
Racine, Annie M; Brickhouse, Michael; Wolk, David A et al. (2018) The personalized Alzheimer's disease cortical thickness index predicts likely pathology and clinical progression in mild cognitive impairment. Alzheimers Dement (Amst) 10:301-310
Greve, Douglas N; Fischl, Bruce (2018) False positive rates in surface-based anatomical analysis. Neuroimage 171:6-14
Wu, Jianxiao; Ngo, Gia H; Greve, Douglas et al. (2018) Accurate nonlinear mapping between MNI volumetric and FreeSurfer surface coordinate systems. Hum Brain Mapp :
Nasr, Shahin; Tootell, Roger B H (2018) Columnar organization of mid-spectral and end-spectral hue preferences in human visual cortex. Neuroimage 181:748-759
Tanaka, Naoaki; Papadelis, Christos; Tamilia, Eleonora et al. (2018) Magnetoencephalographic Spike Analysis in Patients With Focal Cortical Dysplasia: What Defines a ""Dipole Cluster""? Pediatr Neurol 83:25-31
Aganj, Iman (2018) Automatic Verification of the Gradient Table in Diffusion-Weighted MRI Based on Fiber Continuity. Sci Rep 8:16541
Fischl, Bruce; Sereno, Martin I (2018) Microstructural parcellation of the human brain. Neuroimage 182:219-231
Polimeni, Jonathan R; Uluda?, Kâmil (2018) Neuroimaging with ultra-high field MRI: Present and future. Neuroimage 168:1-6

Showing the most recent 10 out of 300 publications