This P41 Biotechnology Resource Grant application seeks renewed support for our successful efforts to develop and apply innovative neuroimaging technologies within the highly integrated multimodal framework of the Center for Functional Neuroimaging Technologies (CFNT). The overall goal of this established NIBIB Biomedical Technology Resource Center (BTRC) is to provide advanced technology resources to more closely examine, and thus better understand, the human brain in health and disease. To this end, we seek to develop new techniques and advance existing technologies to acquire and analyze functional images of the working brain, with unprecedented physiological precision and spatiotemporal resolution, and to deploy these innovative tools to promote investigation of complex neuroscientific questions. Through coordinated research and development, collaborative research, service use, training and dissemination activities, our BTRC has built a standard of excellence in developing, sharing, and supporting the use of multimodal imaging tools that have consistently advanced capabilities for research that spans many basic science and clinical domains. Central to this effort are our four Technology Research and Development (TRD) projects to improve and extend techniques for non-invasive magnetic resonance image analysis (Project 1) and acquisition (Project 2), electromagnetic source imaging (Project 3), and optical neuroimaging (Project 4). Directly motivating the Aims of these TRD projects is a strong network of Collaborative Projects, which both challenge the TRDs to continue to innovate the next-generation neuroimaging tools, and reciprocally, employ the new tools we develop to drive their own research forward in new directions. Another essential element in this framework is the extensive application of our resources by a wide and diverse Service Users community. Finally, the TRDs, Collaborative and Service Projects contribute to the BTRC's Training and Dissemination mission, which additionally includes multiple dedicated Fellowships and Workshops, strong web presense, and important industrial partnerships, providing multiple channels to share the knowledge needed to apply the tools we develop with the scientific community locally, nationally, and internationally.

Public Health Relevance

By actively developing cutting-edge neuroimaging technologies, conducting collaborative research involving applications of these technologies, and extending them for service use to the broader neuroscientific research community, this long-running BTRC is helping to shape the basic neuroscience and translational research landscape. Ultimately, this work may thus facilitate the development of new therapeutic advances for an astounding array of neurological and psychiatric diseases. ---------------------------------------------------------------------------------------------------------------------------------

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
2P41EB015896-16
Application #
8667638
Study Section
Special Emphasis Panel (ZEB1)
Program Officer
Liu, Guoying
Project Start
2000-09-01
Project End
2019-05-31
Budget Start
2014-08-01
Budget End
2015-05-31
Support Year
16
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Tisdall, M Dylan; Reuter, Martin; Qureshi, Abid et al. (2016) Prospective motion correction with volumetric navigators (vNavs) reduces the bias and variance in brain morphometry induced by subject motion. Neuroimage 127:11-22
Stockmann, Jason P; Witzel, Thomas; Keil, Boris et al. (2016) A 32-channel combined RF and B0 shim array for 3T brain imaging. Magn Reson Med 75:441-51
Rieckmann, Anna; Hedden, Trey; Younger, Alayna P et al. (2016) Dopamine transporter availability in clinically normal aging is associated with individual differences in white matter integrity. Hum Brain Mapp 37:621-31
Lafer-Sousa, Rosa; Conway, Bevil R; Kanwisher, Nancy G (2016) Color-Biased Regions of the Ventral Visual Pathway Lie between Face- and Place-Selective Regions in Humans, as in Macaques. J Neurosci 36:1682-97
Sundaram, Padmavathi; Nummenmaa, Aapo; Wells, William et al. (2016) Direct neural current imaging in an intact cerebellum with magnetic resonance imaging. Neuroimage 132:477-90
Golestanirad, Laleh; Angelone, Leonardo M; Iacono, Maria Ida et al. (2016) Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops. Magn Reson Med :
Nasr, Shahin; Polimeni, Jonathan R; Tootell, Roger B H (2016) Interdigitated Color- and Disparity-Selective Columns within Human Visual Cortical Areas V2 and V3. J Neurosci 36:1841-57
DeSalvo, Matthew N; Tanaka, Naoaki; Douw, Linda et al. (2016) Resting-State Functional MR Imaging for Determining Language Laterality in Intractable Epilepsy. Radiology 281:264-9
Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H et al. (2016) Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease. Neuroimage 134:573-86
Maeda, Yumi; Kettner, Norman; Kim, Jieun et al. (2016) Primary somatosensory/motor cortical thickness distinguishes paresthesia-dominant from pain-dominant carpal tunnel syndrome. Pain 157:1085-93

Showing the most recent 10 out of 161 publications