We are requesting continuation of funds for the National Biomedical Resource Center in Image-guided Therapy (NCIGT) at the Brigham &Women's Hospital. The Center provides a unique, centralized infrastructure for translational research in the area of image-guided therapy. The multidisciplinary program involves clinical investigators, biomedical engineers, and basic scientists in promoting and advancing IGT methods and related innovative clinical applications. We will develop and make available new, clinically relevant technologies in six discrete TRD Core Projects: 1) Computational Core;2) Imaging Core;3) Image-Guidance Core;4) Neurosurgery Core;5) Prostate Core and 6) Focused Ultrasound Therapy Core. These key research initiatives represent the technical and clinical infrastructure of the Resource. They are anticipated to have significant effect on several future IGT methods and clinical applications. We will combine forces with 7 independently funded Collaborations (DBPs) that address various essential technical or clinical aspects of IGT and our contribution will have significant clinical impact. Our goal is to combine current advances in the field of imaging (like Molecular Imaging, Functional and Metabolic Imaging) with advanced therapies (like MRI-guided Focused Ultrasound ablation or targeted drug delivery, endoscopic surgery or robotics) to achieve less invasive, safer and more effective therapeutic options. All IGT developments and applications will be tested and validated either on our site or at our collaborators, or distributed directly as a service to the growing IGT community. Our overarching goal is to continue being the leading National Center that reaching effectively across a broad range of constituencies through service, training and dissemination of the novel technologies and methods under development In this Resource.

Public Health Relevance

The overarching impetus for this application is to advance and propagate novel image-guided therapy technologies, effectively producing strengthened multidisciplinary research efforts and an infrastructure commensurate with sophisticated technology development. We are also committed to making our technology broadly available to a large community of clinician. Our mission is to develop and implement novel, innovative technologies to decrease the invasiveness of surgeries and interventions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
8P41EB015898-08
Application #
8299090
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Program Officer
Krosnick, Steven
Project Start
2004-04-01
Project End
2015-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
8
Fiscal Year
2012
Total Cost
$2,750,201
Indirect Cost
$1,265,498
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Kim, Alexander J; Basu, Sankha; Glass, Carolyn et al. (2018) Unique Intradural Inflammatory Mass Containing Precipitated Morphine: Confirmatory Analysis by LESA-MS and MALDI-MS. Pain Pract 18:889-894
Zhang, Fan; Savadjiev, Peter; Cai, Weidong et al. (2018) Whole brain white matter connectivity analysis using machine learning: An application to autism. Neuroimage 172:826-837
Aksit Ciris, Pelin; Chiou, Jr-Yuan George; Glazer, Daniel I et al. (2018) Accelerated Segmented Diffusion-Weighted Prostate Imaging for Higher Resolution, Higher Geometric Fidelity, and Multi-b Perfusion Estimation. Invest Radiol :
Essayed, Walid I; Unadkat, Prashin; Hosny, Ahmed et al. (2018) 3D printing and intraoperative neuronavigation tailoring for skull base reconstruction after extended endoscopic endonasal surgery: proof of concept. J Neurosurg :1-8
Zhang, Shelley HuaLei; Maier, Stephan E; Panych, Lawrence P (2018) Improved spatial localization in magnetic resonance spectroscopic imaging with two-dimensional PSF-Choice encoding. J Magn Reson 290:18-28
Jiang, Baichuan; Gao, Wenpeng; Kacher, Daniel et al. (2018) Kalman filter-based EM-optical sensor fusion for needle deflection estimation. Int J Comput Assist Radiol Surg 13:573-583
Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura et al. (2018) Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies. J Med Imaging (Bellingham) 5:011006
Guenette, J P; Seethamraju, R T; Jayender, J et al. (2018) MR Imaging of the Facial Nerve through the Temporal Bone at 3T with a Noncontrast Ultrashort Echo Time Sequence. AJNR Am J Neuroradiol 39:1903-1906
Newitt, David C; Malyarenko, Dariya; Chenevert, Thomas L et al. (2018) Multisite concordance of apparent diffusion coefficient measurements across the NCI Quantitative Imaging Network. J Med Imaging (Bellingham) 5:011003
Taghipour, Mehdi; Ziaei, Alireza; Alessandrino, Francesco et al. (2018) Investigating the role of DCE-MRI, over T2 and DWI, in accurate PI-RADS v2 assessment of clinically significant peripheral zone prostate lesions as defined at radical prostatectomy. Abdom Radiol (NY) :

Showing the most recent 10 out of 286 publications