The Neuroimage Analysis Center (NAC) is a National Resource Center in the Biomedical Technology Resource Center (BTRC) program that is developing image analysis algorithms and software tools to improve understanding of brain diseases and to enable innovative treatments. This competitive renewal application focuses on subject-specific analyses of medical imaging data. Underlying NAC's approach is a set of technical expertise and methodologies - Image analysis, applied statistics, tensor processing, time series analysis, and software engineering - that will enable the Center to exploit the atlas-based technologies developed in previous funding cycles to improve the analysis of individual patient data. The proposed work will be performed in four Technical Research and Development (TRD) projects and one Infrastructure project; it will be leveraged by outreach and operations activities, which include training in the use of 3D Slicer, the software platform supported by the Center. The four TRDs encompass microstructure imaging, spatio-temporal disease modeling, anatomical variability modeling, and Slicer engineering. The NAC team of investigators is augmented by subcontractors at GE, UMass Worcester, and Boston University, each of whom will provide unique expertise toward methodological and infrastructure development. The Driving Biomedical Projects (DBPs) will ensure that all Center activities continue to be highly relevant to NIH grantees. These DBPs include research in chronic traumatic encephalopathy, methamphetamine addiction and AIDS, schizophrenia, Alzheimer's disease, Huntington disease, autism, and image guided therapy. The translation of technological research into 3D Slicer as a platform for outreach represents a key deliverable In NAC's role as a resource center. The Center will continue to offer support and training at local and national venues as part of its outreach activities. Close collaboration with clinicians and scientists continues to be critical to the implementation of image analysis tools for the purpose of understanding the brain and treating Its disorders, an Important mission of the NIH.

Public Health Relevance

The Neuroimaging Analysis Center (NAC) Is a National Resource Center in the Biomedical Technology Resource Center (BTRC) program that is developing image analysis algorithms and software tools to improve understanding of brain diseases and to enable Innovative treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
4P41EB015902-19
Application #
9115586
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Pai, Vinay Manjunath
Project Start
2013-08-01
Project End
2018-05-31
Budget Start
2016-06-01
Budget End
2017-05-31
Support Year
19
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
Nilsson, Markus; Larsson, Johan; Lundberg, Dan et al. (2018) Liquid crystal phantom for validation of microscopic diffusion anisotropy measurements on clinical MRI systems. Magn Reson Med 79:1817-1828
Gallardo, Guillermo; Wells 3rd, William; Deriche, Rachid et al. (2018) Groupwise structural parcellation of the whole cortex: A logistic random effects model based approach. Neuroimage 170:307-320
Zhang, Fan; Wu, Ye; Norton, Isaiah et al. (2018) An anatomically curated fiber clustering white matter atlas for consistent white matter tract parcellation across the lifespan. Neuroimage 179:429-447
Guenette, Jeffrey P; Stern, Robert A; Tripodis, Yorghos et al. (2018) Automated versus manual segmentation of brain region volumes in former football players. Neuroimage Clin 18:888-896
Hong, Yi; O'Donnell, Lauren J; Savadjiev, Peter et al. (2018) Genetic load determines atrophy in hand cortico-striatal pathways in presymptomatic Huntington's disease. Hum Brain Mapp 39:3871-3883
Machado, InĂªs; Toews, Matthew; Luo, Jie et al. (2018) Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching. Int J Comput Assist Radiol Surg 13:1525-1538
Scanlan, Adam B; Nguyen, Alex V; Ilina, Anna et al. (2018) Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves. Pediatr Cardiol 39:538-547
Toews, Matthew; Wells, William M (2018) Phantomless Auto-Calibration and Online Calibration Assessment for a Tracked Freehand 2-D Ultrasound Probe. IEEE Trans Med Imaging 37:262-272
Stefanik, Laura; Erdman, Lauren; Ameis, Stephanie H et al. (2018) Brain-Behavior Participant Similarity Networks Among Youth and Emerging Adults with Schizophrenia Spectrum, Autism Spectrum, or Bipolar Disorder and Matched Controls. Neuropsychopharmacology 43:1180-1188
Luo, Jie; Frisken, Sarah; Machado, Ines et al. (2018) Using the variogram for vector outlier screening: application to feature-based image registration. Int J Comput Assist Radiol Surg 13:1871-1880

Showing the most recent 10 out of 252 publications