Optical coherence tomography (OCT) has evolved into a powerful microscopy technique for a broad range of applications in biology and clinical medicine. It can safely be used to image biological tissue with high resolution and can easily integrate flexible, narrow diameter optical fiber probes for imaging internal organs. Recent advances have increased OCT imaging speeds by nearly two orders of magnitude, enabling microscopic, three-dimensional imaging over large fields-of-view, a capability that cannot be provided by conventional imaging or histology. Viewed across the entire range of biological and clinical applications, the opportunity presented by OCT technology is immense. State-of-the-art OCT technology, however, is not widely available to the biological and clinical communities. The few commercial systems that are available don't integrate recent advances and don't permit customization to new biomedical applications. Additionally, the technical complexity of OCT is a barrier to implementation and innovation outside of a limited number of technical academic research groups and these groups have been focused on a narrow sector of the potential applications in biology and medicine. The overriding motivation of this proposed Resource is to address the deficient accessibility of cutting-edge OCT instrumentation and technology. We propose to meet this need through the innovation of new technical capabilities that are motivated by significant biological and clinical challenges, and through translation, facilitated by direct collaboration. To launch the Resource, we have initiated six driving biomedical projects (DBPs) and through extensive discussions have jointly identified specific technical projects that will have significant biological and clinical impact. Projects that could serve more than one DBF or that represented a synergistic combination were identified to be particularly attractive for the initial efforts of the Resource. The selected projects naturally fall into three core thematic areas: advanced structural imaging, functional and compositional contrast, and hvbrid imaoino modalities.

Public Health Relevance

The proposed Resource will develop and provide broad access to powerful new microscopic imaging tools for biological and clinical research. These instruments will open new avenues of biomedical research and may enable the identification of new methods for diagnosis, provide new insights into disease or disease progression, or lead to the formulation of new therapeutic strategies or drug targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Biotechnology Resource Grants (P41)
Project #
5P41EB015903-04
Application #
8690846
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Conroy, Richard
Project Start
2011-07-21
Project End
2016-06-30
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Massachusetts General Hospital
Department
Type
DUNS #
City
Boston
State
MA
Country
United States
Zip Code
02199
Uribe-Patarroyo, Néstor; Kassani, Sahar Hosseinzadeh; Villiger, Martin et al. (2018) Robust wavenumber and dispersion calibration for Fourier-domain optical coherence tomography. Opt Express 26:9081-9094
Villiger, Martin; Otsuka, Kenichiro; Karanasos, Antonios et al. (2018) Coronary Plaque Microstructure and Composition Modify Optical Polarization: A New Endogenous Contrast Mechanism for Optical Frequency Domain Imaging. JACC Cardiovasc Imaging 11:1666-1676
Inoue, Yoshitaka; Liu, Yuk Ming; Otawara, Masayuki et al. (2018) Resolvin D2 Limits Secondary Tissue Necrosis After Burn Wounds in Rats. J Burn Care Res 39:423-432
Villiger, Martin; Otsuka, Kenichiro; Karanasos, Antonios et al. (2018) Repeatability Assessment of Intravascular Polarimetry in Patients. IEEE Trans Med Imaging 37:1618-1625
Jones, Dennis; Meijer, Eelco F J; Blatter, Cedric et al. (2018) Methicillin-resistant Staphylococcus aureus causes sustained collecting lymphatic vessel dysfunction. Sci Transl Med 10:
Bouta, Echoe M; Blatter, Cedric; Ruggieri, Thomas A et al. (2018) Lymphatic function measurements influenced by contrast agent volume and body position. JCI Insight 3:
Siddiqui, Meena; Nam, Ahhyun S; Tozburun, Serhat et al. (2018) High-speed optical coherence tomography by circular interferometric ranging. Nat Photonics 12:111-116
Tozburun, Serhat; Blatter, Cedric; Siddiqui, Meena et al. (2018) Phase-stable Doppler OCT at 19 MHz using a stretched-pulse mode-locked laser. Biomed Opt Express 9:952-961
Blatter, Cedric; Meijer, Eelco F J; Padera, Timothy P et al. (2018) Simultaneous measurements of lymphatic vessel contraction, flow and valve dynamics in multiple lymphangions using optical coherence tomography. J Biophotonics 11:e201700017
Bourquard, Aurélien; Pablo-Trinidad, Alberto; Butterworth, Ian et al. (2018) Non-invasive detection of severe neutropenia in chemotherapy patients by optical imaging of nailfold microcirculation. Sci Rep 8:5301

Showing the most recent 10 out of 134 publications