There are two main objectives of this Core. First, we intend to provide training in the use of stable isotope technology within the BTRC for use by scientists and clinicians outside the BTRC. The goal is to expand the general knowledge of how to use stable isotopes for investigation of metabolic questions in intact tissues and patients. Much of the technology, once understood, is easily transferred to most university and medical school settings in the United States. Second, we intend to disseminate the results of the work described in the TR&D projects to the clinical and scientific community. The goal is to make physicians and biomedical scientists aware of the capabilities of the technologies and to encourage use of the advances from the BTRC. To achieve these goals, we propose four specific aims.
Aim 1 is to continue to present a two-day Annual Symposium with a focus on magnetic resonance and metabolism. The first day will be refocused on training in technology and the second day will continue to present broader biological and clinical topics that are relevant to the technology developed in the BTRC.
Aim 2 is to provide training tailored to the needs of visiting scientists, students, medical housestaff and subspeciality clinical fellows as necessary to allow investigators outside the BTRC to apply the technology to clinical problems.
Aim 3 is to disseminate results and technologies via multiple strategies including a continued local Mini-Symposium for Undergraduates, continued participation in the NIH Isotope Course presented by the NIDDK, a newly proposed training course in 13C isotopomer and flux analysis at the World Molecular Imaging Congress, the web page and teaching in graduate courses.
Aim 4 is to disseminate open source software designed for experiment planning, spectral analysis and metabolic fitting of 13C tracer experiments. Together, our training and dissemination activities provide a wide range of opportunities for investigators to learn to use stable isotopes for their studies in intermediary metabolism in patients and other systems.

Agency
National Institute of Health (NIH)
Type
Biotechnology Resource Grants (P41)
Project #
2P41EB015908-29
Application #
9209328
Study Section
Special Emphasis Panel (ZEB1)
Project Start
Project End
Budget Start
Budget End
Support Year
29
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Texas Sw Medical Center Dallas
Department
Type
DUNS #
800771545
City
Dallas
State
TX
Country
United States
Zip Code
75390
Moss, Lacy R; Mulik, Rohit S; Van Treuren, Tim et al. (2016) Investigation into the distinct subcellular effects of docosahexaenoic acid loaded low-density lipoprotein nanoparticles in normal and malignant murine liver cells. Biochim Biophys Acta 1860:2363-76
Jin, Eunsook S; Sherry, A Dean; Malloy, Craig R (2016) An Oral Load of [13C3]Glycerol and Blood NMR Analysis Detect Fatty Acid Esterification, Pentose Phosphate Pathway, and Glycerol Metabolism through the Tricarboxylic Acid Cycle in Human Liver. J Biol Chem 291:19031-41
Satapati, Santhosh; Kucejova, Blanka; Duarte, Joao A G et al. (2016) Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 126:1605
Zhang, Liang; Habib, Amyn A; Zhao, Dawen (2016) Phosphatidylserine-targeted liposome for enhanced glioma-selective imaging. Oncotarget 7:38693-38706
Walker, Christopher M; Merritt, Matthew; Wang, Jian-Xiong et al. (2016) Use of a Multi-compartment Dynamic Single Enzyme Phantom for Studies of Hyperpolarized Magnetic Resonance Agents. J Vis Exp :e53607
Hensley, Christopher T; Faubert, Brandon; Yuan, Qing et al. (2016) Metabolic Heterogeneity in Human Lung Tumors. Cell 164:681-94
Clavijo Jordan, M Veronica; Lo, Su-Tang; Chen, Shiuhwei et al. (2016) Zinc-sensitive MRI contrast agent detects differential release of Zn(II) ions from the healthy vs. malignant mouse prostate. Proc Natl Acad Sci U S A 113:E5464-71
Kiswandhi, Andhika; Niedbalski, Peter; Parish, Christopher et al. (2016) Impact of Ho(3+)-doping on (13)C dynamic nuclear polarization using trityl OX063 free radical. Phys Chem Chem Phys 18:21351-9
Ganji, Sandeep K; Maher, Elizabeth A; Choi, Changho (2016) In vivo (1)H MRSI of glycine in brain tumors at 3T. Magn Reson Med 75:52-62
Pichumani, Kumar; Mashimo, Tomoyuki; Vemireddy, Vamsidhara et al. (2016) Hepatic gluconeogenesis influences (13)C enrichment in lactate in human brain tumors during metabolism of [1,2-(13)C]acetate. Neurochem Int 97:133-6

Showing the most recent 10 out of 102 publications