Glycosaminoglycans (GAGs), such as heparin, heparan sulfate (HS), and chondroitin sulfate (CS), are naturally occurring polydisperse linear polysaccharides that are heavily O- and N-sulfated. The interaction between GAGs and proteins are critical for many biological processes including cell-cell and cell-matrix interactions, cell migration and proliferation, growth factor sequestration, chemokine and cytokine activation, microbial recognition and tissue morphogenesis during embryonic development. Hundreds of HS-binding proteins have been identified, but the oligosaccharide structures that mediate particular interactions have been defined in only a few cases due to the structural complexity of HS.
The aim of the Dissemination component of the Resource is to make its cutting edge technologies and research tools readily accessible to the wider scientific community. This task is achieved through many diverse avenues including publications in scientific journals, presentations at conferences and symposia, web-based molecular modeling tools and tutorials (GLYCAM), incorporation of new advances into Resource analytical services and hands-on training courses, and collaborative research projects. Some highlights in the new funding cycle will be to disseminate information about our resources particularly through: (1) web-based molecular modeling tools and tutorials available via GLYCAM-Web (http://glycam.ccrc.uga.edu), which facilitate the modeling of glycans, glycoproteins, and carbohydrate-protein complexes, (2) development of two software tools for GAG mass spectrometry analysis will be made available to the glycoscience community that help in interpretation of spectra for MS/MS analysis of native GAGs and simplify the analysis and statistical validation of the LC- MS/MS spectra of derivatized HS oligosaccharides, (3) continued Resource related presentations, organization of national and international meetings, and outreach to outside investigators through publications, protocols and patents, (4) enhancements to our Resource website (http://glycotech.ccrc.uga.edu) with detailed descriptions of our technologies and information on collaborations and service activities, protocols, and advertisement for our annual hands-on training courses, including the Analytical Techniques for Structural Analysis of Proteoglycans course that has particular focus on this Resource's Technologies.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103390-29
Application #
9414612
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2018-02-01
Budget End
2019-01-31
Support Year
29
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Georgia
Department
Type
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Gas-Pascual, Elisabet; Ichikawa, Hiroshi Travis; Sheikh, Mohammed Osman et al. (2018) CRISPR/Cas9 and glycomics tools for Toxoplasma glycobiology. J Biol Chem :
Epp, Alexandra; Hobusch, Juliane; Bartsch, Yannic C et al. (2018) Sialylation of IgG antibodies inhibits IgG-mediated allergic reactions. J Allergy Clin Immunol 141:399-402.e8
Flanagan-Steet, Heather; Christian, Courtney; Lu, Po-Nien et al. (2018) TGF-ß Regulates Cathepsin Activation during Normal and Pathogenic Development. Cell Rep 22:2964-2977
Talsma, Ditmer T; Katta, Kirankumar; Ettema, Marieke A B et al. (2018) Endothelial heparan sulfate deficiency reduces inflammation and fibrosis in murine diabetic nephropathy. Lab Invest 98:427-438
Schmalstig, Alan A; Benoit, Stéphane L; Misra, Sandeep K et al. (2018) A Non-catalytic Antioxidant Role for Helicobacter pylori Urease. J Bacteriol :
Zhang, Peng; Lu, Hong; Peixoto, Rui T et al. (2018) Heparan Sulfate Organizes Neuronal Synapses through Neurexin Partnerships. Cell 174:1450-1464.e23
Amos, Robert A; Pattathil, Sivakumar; Yang, Jeong-Yeh et al. (2018) A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex. J Biol Chem 293:19047-19063
Thieker, David F; Xu, Yongmei; Chapla, Digantkumar et al. (2018) Downstream Products are Potent Inhibitors of the Heparan Sulfate 2-O-Sulfotransferase. Sci Rep 8:11832
Qiu, Hong; Shi, Songshan; Wang, Shunchun et al. (2018) Proteomic Profiling Exosomes from Vascular Smooth Muscle Cell. Proteomics Clin Appl 12:e1700097
Kadirvelraj, Renuka; Yang, Jeong-Yeh; Sanders, Justin H et al. (2018) Human N-acetylglucosaminyltransferase II substrate recognition uses a modular architecture that includes a convergent exosite. Proc Natl Acad Sci U S A 115:4637-4642

Showing the most recent 10 out of 246 publications