We propose to establish a National Research Resource for Imaging Mass Spectrometry at Vanderbilt University School of Medicine, Nashville, TN. The Resource would focus on technology advances and innovation that generally would include next generation hardware, software and methods relevant to direct tissue profiling and imaging using mass spectrometry. At the same time, a number of applications in the biological and medical area that would derive significant benefits from this developing technology will be undertaken. In turn, the technical needs of these biological investigations will feed back and help focus and drive additional technology improvement and innovation. The technology program proposed here would involve significant development of histology directed mass spectrometric profiling and imaging of tissues, a new ion source geometry for transmission geometry laser illumination of tissues for single cell analysis, high spatial resolution imaging down to one micron lateral resolution, high sensitivity profiling and imaging to measure lower abundance species than is now possible, and the development of the relevant biocomputational resources to complement the technological advances and enable it to be routinely used by biologists and medical research investigators who are not experts in the field of the technology. The driving biology would be focused on applications that would require new capabilities, such as high spatial resolution imaging of the serotonin neuron proteome in neurodevelopmental disorders, studies of breast and prostate cancer, age related macular degeneration, selected stem cell analyses, studies of the glomerulus in diabetic nephropathy, molecular presentations in malformed heart valve development, and aspects of tumor angiogenesis and growth. Important activities of the Resource would also involve selected collaborations of NIH sponsored research that would significantly benefit from the developing technology of Imaging Mass Spectrometry, to offer core capabilities that include secondary ion mass spectrometry for ultra high resolution imaging of low MW species, and FT ICR instrumentation and expertise for ultra high mass spectrometric resolution Training and dissemination of the technology as well as the expertise present in the Resource would be accomplished through a yearly short course, individual scientific visits by established scientists and trainees, and publication of the outcomes of both the technology and applications programs.

Public Health Relevance

The Resource is involved the discovery of molecular events that occur in disease using advanced instrumentation that is able to measure minute amounts of material. The Resource includes the development of 'next generation'technologies to make higher sensitivity and higher resolution measurements on tissues than can be done currently and apply these technologies to specific biological projects to study specific diseases, such as cancer, kidney disease, diabetes, and neurological disorders. The outcome of this work will be a new understanding of the biology of health and disease that will lead to new treatment opportunities for patients with these diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (40))
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
Schools of Medicine
United States
Zip Code
Dittwald, Piotr; Nghia, Vu Trung; Harris, Glenn A et al. (2014) Towards automated discrimination of lipids versus peptides from full scan mass spectra. EuPA Open Proteom 4:87-100
Anderson, David M G; Ablonczy, Zsolt; Koutalos, Yiannis et al. (2014) High resolution MALDI imaging mass spectrometry of retinal tissue lipids. J Am Soc Mass Spectrom 25:1394-403
Libes, Jaime M; Seeley, Erin H; Li, Ming et al. (2014) Race disparities in peptide profiles of North American and Kenyan Wilms tumor specimens. J Am Coll Surg 218:707-20
Yang, Junhai; Caprioli, Richard M (2014) Matrix pre-coated targets for high throughput MALDI imaging of proteins. J Mass Spectrom 49:417-22
Seeley, Erin H; Wilson, Kevin J; Yankeelov, Thomas E et al. (2014) Co-registration of multi-modality imaging allows for comprehensive analysis of tumor-induced bone disease. Bone 61:208-16
Gessel, Megan M; Norris, Jeremy L; Caprioli, Richard M (2014) MALDI imaging mass spectrometry: spatial molecular analysis to enable a new age of discovery. J Proteomics 107:71-82
Zavalin, Andre; Yang, Junhai; Haase, Andreas et al. (2014) Implementation of a Gaussian beam laser and aspheric optics for high spatial resolution MALDI imaging MS. J Am Soc Mass Spectrom 25:1079-82
Moore, Jessica L; Becker, Kyle W; Nicklay, Joshua J et al. (2014) Imaging mass spectrometry for assessing temporal proteomics: analysis of calprotectin in Acinetobacter baumannii pulmonary infection. Proteomics 14:820-8
Grove, Kerri J; Voziyan, Paul A; Spraggins, Jeffrey M et al. (2014) Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J Lipid Res 55:1375-1385
Moore, Jessica L; Caprioli, Richard M; Skaar, Eric P (2014) Advanced mass spectrometry technologies for the study of microbial pathogenesis. Curr Opin Microbiol 19:45-51

Showing the most recent 10 out of 24 publications