Synchrotron radiation (SR) is an extremely bright and tunable x-ray source that enables forefront research in structural molecular biology (SMB). A Synchrotron Structural Biology Resource is proposed for continuing support at the Stanford Synchrotron Radiation Light source. (SSRL) by the NIH NIGMS and DOE BER to develop new technologies in macromolecular crystallography, x-ray absorption/emission spectroscopy and small angle x-ray scattering/diffraction, to train/support users, and to disseminate the newly developed capabilities to the biomedical research community. This proposal is for the continued funding, operation and future development of this SMB Resource. New initiatives will capitalize on the increasing SR performance of SSRL's 3rd generation storage ring SPEAR3. Proposed also is the development of selected SMB applications of LCLS. A principal aim is to optimize experimental facilities and instrumentation, detectors, software and compute performance on the SMB Resource's 9+ beam lines at SSRL (with another two in construction) to take full advantage of the high brightness provided by SPEAR3 at 500 mA current and provide innovative new instrumentation and methodologies. This will enable the SMB Resource to advance the scientific forefront with new initiatives built upon state-of-the-art instrumentation and methodologies, innovative software and automated/high-throughput systems for: studying high resolution structures/function of large, complex biomolecules and molecular machines; investigating fundamental questions in biophysics such as protein folding; and developing/improving methods for studying very fast time-resolved structural changes in chemical and biological systems with ultrafast or fast scattering and spectroscopy techniques. These scientific advancements will be facilitated by parallel developments in software to provide expanded capabilities for instrument and detector control, remote data collection and real-time data analysis. Driving biomedical projects and collaborative research and service programs involving a large number of outside scientists will drive and support core technological developments.

Public Health Relevance

is to a number of important biological problems including the structure of enzymes, metalloproteins, membrane-bound proteins and viruses; the active site structure of metalloproteins involved in metabolism and photosynthesis; and how these structures change in different states or evolve in time as reactions or events like protein folding or conformational changes occur. Such information is more broadly important to the health-related areas of drug design, cancer research, and virology.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103393-40
Application #
9647463
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Smith, Ward
Project Start
1997-03-01
Project End
2021-02-28
Budget Start
2019-03-01
Budget End
2021-02-28
Support Year
40
Fiscal Year
2019
Total Cost
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Flyak, Andrew I; Ruiz, Stormy; Colbert, Michelle D et al. (2018) HCV Broadly Neutralizing Antibodies Use a CDRH3 Disulfide Motif to Recognize an E2 Glycoprotein Site that Can Be Targeted for Vaccine Design. Cell Host Microbe 24:703-716.e3
Wang, Wei; Walmacq, Celine; Chong, Jenny et al. (2018) Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Proc Natl Acad Sci U S A 115:E2538-E2545
Sarangi, Ritimukta (2018) A biological perspective towards a standard for information exchange and reporting in XAS. J Synchrotron Radiat 25:944-952
Kubin, Markus; Guo, Meiyuan; Kroll, Thomas et al. (2018) Probing the oxidation state of transition metal complexes: a case study on how charge and spin densities determine Mn L-edge X-ray absorption energies. Chem Sci 9:6813-6829
Akturk, Anil; Wasilko, David J; Wu, Xiaochun et al. (2018) Mechanism of phosphoribosyl-ubiquitination mediated by a single Legionella effector. Nature 557:729-733
Rantalainen, Kimmo; Berndsen, Zachary T; Murrell, Sasha et al. (2018) Co-evolution of HIV Envelope and Apex-Targeting Neutralizing Antibody Lineage Provides Benchmarks for Vaccine Design. Cell Rep 23:3249-3261
Yang, Ke; Stanfield, Robyn L; Martinez-Yamout, Maria A et al. (2018) Structural basis for cooperative regulation of KIX-mediated transcription pathways by the HTLV-1 HBZ activation domain. Proc Natl Acad Sci U S A 115:10040-10045
Stump, Sascha; Mou, Tung-Chung; Sprang, Stephen R et al. (2018) Crystal structure of the major quadruplex formed in the promoter region of the human c-MYC oncogene. PLoS One 13:e0205584
Porter, Nicholas J; Wagner, Florence F; Christianson, David W (2018) Entropy as a Driver of Selectivity for Inhibitor Binding to Histone Deacetylase 6. Biochemistry 57:3916-3924

Showing the most recent 10 out of 686 publications