The NE-CAT Center for Advanced Macromolecular Crystallography operates two undulator beamlines at Sector 24 of the Advanced Photon Source, Argonne National Laboratory. Our mission is to develop advanced technologies for challenging problems in structural biology. These problems come to us as Driving Biomedical Projects (DBPs), selected for their groundbreaking science. Examples include membrane channels, transporters, and receptors;cell signaling proteins;enzymes catalyzing complex cellular processes;structural biology of translation, transcription, recombination and repair;lare RNA molecules and RNA-mediated gene regulation, and large protein complexes such as nuclear pores. These projects often confront microcrystals, inhomogeneous crystals, poorly diffracting crystals, or pathologies such as multiple lattices. To address these problems we will develop technology in three interdependent areas: (1) microbeam diffraction, (2) beamline automation, and (3) low resolution structural biology. Microbeam diffraction builds on our successful microcrystal diffraction program. We will develop technology for small (2- 5 |j,m), intense and stable microbeams, for use with microcrystals and for measuring data from selected regions of inhomogeneous crystals. We will also work out how to improve sample stability, which often limits data quality. For inhomogeneous samples we will develop optimal data-collection protocols. Beamline automation will focus on new, rapid screening protocols, automated procedures to determine the best data collection strategies, especially for multiple crystals and flexible kappa geometry, and methods for automated data processing and analysis. Low resolution structural biology is growing rapidly, driven by structural studies of multicomponent complexes and membrane proteins. We will develop technology to obtain the best possible signal-to-noise at the resolution limit while still measuring the lowest order reflections. We will develop protocols to optimize data-collection strategies and data processing, especially for multiple crystals. We will also develop on- site methods to improve the resolution of existing crystals. During the past five years we have maintained a very productive collaboration and service program. We expect the number of users (including DBPs) to remain constant at about 1000 per year. We will make our new technology available to all users as early as possible. A strength of our Center is user training. We will continue our extensive training program, while developing new approaches to train remote access users. We will continue dissemination of both technology and scientific results through mechanisms that include our web site, presentations at meetings, workshops, publications, and one-on-one contacts.

Public Health Relevance

The purpose of the proposed Center is to enhance our ability to visualize the three-dimensional structures of biological macromolecules. Many of the molecules are targets for drug design, and understanding their structures will aid in the development of new pharmaceutical agents. In addition, these structures allow us to better understand basic biological systems often resulting in the identification of new pharmaceutical targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103403-12
Application #
8643802
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Program Officer
Wu, Mary Ann
Project Start
2001-06-15
Project End
2018-03-31
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
12
Fiscal Year
2014
Total Cost
$2,732,457
Indirect Cost
$427,695
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Coleman, Jonathan A; Gouaux, Eric (2018) Structural basis for recognition of diverse antidepressants by the human serotonin transporter. Nat Struct Mol Biol 25:170-175
Gallagher-Jones, Marcus; Glynn, Calina; Boyer, David R et al. (2018) Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nat Struct Mol Biol 25:131-134
Raymond, Donald D; Bajic, Goran; Ferdman, Jack et al. (2018) Conserved epitope on influenza-virus hemagglutinin head defined by a vaccine-induced antibody. Proc Natl Acad Sci U S A 115:168-173
Omattage, Natalie S; Deng, Zengqin; Pinkner, Jerome S et al. (2018) Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nat Microbiol 3:1362-1368
Sukumar, N; Liu, S; Li, W et al. (2018) Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2?Å resolution. Biochimie 154:45-54
Brumshtein, Boris; Esswein, Shannon R; Sawaya, Michael R et al. (2018) Identification of two principal amyloid-driving segments in variable domains of Ig light chains in systemic light-chain amyloidosis. J Biol Chem 293:19659-19671
Lau, Yue-Ting K; Baytshtok, Vladimir; Howard, Tessa A et al. (2018) Discovery and engineering of enhanced SUMO protease enzymes. J Biol Chem 293:13224-13233
Kozono, Shingo; Lin, Yu-Min; Seo, Hyuk-Soo et al. (2018) Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun 9:3069
Sui, Xuewu; Farquhar, Erik R; Hill, Hannah E et al. (2018) Preparation and characterization of metal-substituted carotenoid cleavage oxygenases. J Biol Inorg Chem 23:887-901
Hosford, Christopher J; Chappie, Joshua S (2018) The crystal structure of the Helicobacter pylori LlaJI.R1 N-terminal domain provides a model for site-specific DNA binding. J Biol Chem 293:11758-11771

Showing the most recent 10 out of 546 publications