The high energy collisional activation project will develop fundamental technology to improve proteomics and lipidomics. The integration of genomic and proteomic data has revealed deficiencies in the sequence coverage of proteins that are identified using conventional proteomic methods. Specifically, a minority of high value genomic variants in cancer are currently identified by state-of-the-art proteomics. This work will deploy new methods using high energy collisional activation tandem mass spectrometry on a MALDI-ToF/ToF platform that is coupled to a two dimensional high performance liquid chromatograph. The ability of HE-CAD to promote pathways of fragmentation (charge-remote fragmentation) that are not currently being used in proteomics is aimed at identifying the proteins that are expressed.
The second aim i s to apply high energy collisional activation to complex lipids, particularly those from pathogenic microorganisms. The lipids and the biosynthetic pathways that generate them in microbes are very different from mammals and thus are a potential target for therapies.

Public Health Relevance

-Public Health Relevance. The Washington University Biomedical Mass Spectrometry Resource has a longstanding history as an active and productive citizen in the NIH Biotechnology Research Resources community. We propose to extend our mission by advancing mass spectrometry technology, development, and research, applying these discoveries to answer critical biomedical research questions, and training the next generation of researchers, towards the ultimate goal of improving public health.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103422-41
Application #
9412484
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2018-01-01
Budget End
2018-12-31
Support Year
41
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Type
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Keul, Nicholas D; Oruganty, Krishnadev; Schaper Bergman, Elizabeth T et al. (2018) The entropic force generated by intrinsically disordered segments tunes protein function. Nature 563:584-588
Goldner, Nicholas K; Bulow, Christopher; Cho, Kevin et al. (2018) Mechanism of High-Level Daptomycin Resistance in Corynebacterium striatum. mSphere 3:
Zhang, Bojie; Cheng, Ming; Rempel, Don et al. (2018) Implementing fast photochemical oxidation of proteins (FPOP) as a footprinting approach to solve diverse problems in structural biology. Methods 144:94-103
Su, Zhaoming; Wu, Chao; Shi, Liuqing et al. (2018) Electron Cryo-microscopy Structure of Ebola Virus Nucleoprotein Reveals a Mechanism for Nucleocapsid-like Assembly. Cell 172:966-978.e12
Zhang, Mengru Mira; Rempel, Don L; Gross, Michael L (2018) A Fast Photochemical Oxidation of Proteins (FPOP) platform for free-radical reactions: the carbonate radical anion with peptides and proteins. Free Radic Biol Med 131:126-132
Shen, G; Li, S; Cui, W et al. (2018) Stabilization of warfarin-binding pocket of VKORC1 and VKORL1 by a peripheral region determines their different sensitivity to warfarin inhibition. J Thromb Haemost 16:1164-1175
Lu, Yue; Goodson, Carrie; Blankenship, Robert E et al. (2018) Primary and Higher Order Structure of the Reaction Center from the Purple Phototrophic Bacterium Blastochloris viridis: A Test for Native Mass Spectrometry. J Proteome Res 17:1615-1623
Fernandez, Estefania; Kose, Nurgun; Edeling, Melissa A et al. (2018) Mouse and Human Monoclonal Antibodies Protect against Infection by Multiple Genotypes of Japanese Encephalitis Virus. MBio 9:
Johnson, Britney; VanBlargan, Laura A; Xu, Wei et al. (2018) Human IFIT3 Modulates IFIT1 RNA Binding Specificity and Protein Stability. Immunity 48:487-499.e5
Girard, T J; Grunz, K; Lasky, N M et al. (2018) Re-evaluation of mouse tissue factor pathway inhibitor and comparison of mouse and human tissue factor pathway inhibitor physiology. J Thromb Haemost 16:2246-2257

Showing the most recent 10 out of 323 publications