The mission of the National Biomedical Computation Resource (NBCR) is to conduct, catalyze, and enable biomedical research by harnessing forefront information technologies to advance mechanistic understanding in multi-scale biomedical problems that integrate diverse structural and functional measurements and span scales of biological organization from molecule to organ system. A central theme of NBCR has been the development and deployment of tools and infrastructure that enable biomedical problems to be addressed using mechanistic, structure- and physics-driven computational models that span scales of biological organization from atomistic simulations of molecular dynamics to continuum simulations of organ physiology and pathophysiology. We have been developing new modeling methods and tools that fill gaps in our ability to bridge critical mesoscales such as the macromolecular (nm) to subcellular (pm) levels. Excellent progress has been made building structurally detailed 3-D models of subcellular architecture from electron tomographic image volumes and using these to simulate transport and signaling processes. But to span from molecular to whole cell, tissue and organ scales other approaches will also be needed. The present supplementary revision application proposes to develop new multi-scale modeling tools and methods that: (1) Allow Markov models (MM) of molecular states to be defined using molecular simulations including molecular dynamics (MD), and Brownian dynamics (BD) models;(2) Facilitate the inclusion of Markov models into systems models of cell signaling, electrophysiology and mechanics suitable for use in multiscale models of cell, tissue and organ biomechanics and biophysics. The goal of this competitive revision application is to develop new multiscale modeling tools and methods that will help bridge the gap between molecular models of individual sarcomeric protein components including actin, myosin and components of the troponin-tropomyosin regulatory complex and cellular models of whole sarcomere activation and mechanics in striated muscle. We also identify other applications ofthe proposed new tools including studies on the role of sarcomeric mutations in muscle diseases and on the function of protein kinase A.

Public Health Relevance

Defects in the contraction of cardiac cells, or cardiomyopathies, are a hallmark of heart disease. Underlying these pathologies is the compromised performance of myofilaments, which are the key contractile components of myocytes. The new tools will enable scientists to elucidate important questions such as how seemingly disparate mutations on distinct protein complexes can result in similar phenotypes such as diseases in the heart or muscle and enable scientists to develop more effective therapies.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Program Officer
Ravichandran, Veerasamy
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Diego
Engineering (All Types)
Schools of Medicine
La Jolla
United States
Zip Code
P Barros, Emília; Malmstrom, Robert D; Nourbakhsh, Kimya et al. (2017) Electrostatic Interactions as Mediators in the Allosteric Activation of Protein Kinase A RI?. Biochemistry 56:1536-1545
Cheng, Kevin J; Demir, Özlem; Amaro, Rommie E (2017) A Comparative Study of the Structural Dynamics of Four Terminal Uridylyl Transferases. Genes (Basel) 8:
Prabhu, Lakshmi; Chen, Lan; Wei, Han et al. (2017) Development of an AlphaLISA high throughput technique to screen for small molecule inhibitors targeting protein arginine methyltransferases. Mol Biosyst 13:2509-2520
Phan, Sébastien; Boassa, Daniela; Nguyen, Phuong et al. (2017) 3D reconstruction of biological structures: automated procedures for alignment and reconstruction of multiple tilt series in electron tomography. Adv Struct Chem Imaging 2:8
Timmermann, Viviane; Dejgaard, Lars A; Haugaa, Kristina H et al. (2017) An integrative appraisal of mechano-electric feedback mechanisms in the heart. Prog Biophys Mol Biol 130:404-417
Grogan, Francesca; Holst, Michael; Lindblom, Lee et al. (2017) Reliability assessment for large-scale molecular dynamics approximations. J Chem Phys 147:234106
Herum, Kate M; Choppe, Jonas; Kumar, Aditya et al. (2017) Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell 28:1871-1882
Votapka, Lane W; Jagger, Benjamin R; Heyneman, Alexandra L et al. (2017) SEEKR: Simulation Enabled Estimation of Kinetic Rates, A Computational Tool to Estimate Molecular Kinetics and Its Application to Trypsin-Benzamidine Binding. J Phys Chem B 121:3597-3606
Purawat, Shweta; Ieong, Pek U; Malmstrom, Robert D et al. (2017) A Kepler Workflow Tool for Reproducible AMBER GPU Molecular Dynamics. Biophys J 112:2469-2474
Stano, Armando; Leaman, Daniel P; Kim, Arthur S et al. (2017) Dense Array of Spikes on HIV-1 Virion Particles. J Virol 91:

Showing the most recent 10 out of 130 publications