MacCHESS, a synchrotron radiation research resource for macromolecular crystallography, has the overall goal of advancing the frontiers of structural biology through innovative technical research and development and user support. MacCHESS leverages the National Science Foundation investments in the Cornell High Energy Synchrotron Source (CHESS), which maintains the synchrotron radiation laboratory, and the Laboratory for Elementary Particle Physics (LEPP), which operates the storage ring. MacCHESS technical developments are driven by both core and collaborative research projects involving a broad range of macromolecules. In addition to performing technical R&D and core research, MacCHESS provides specialized instrumentation for macromolecular crystallography and a staff for user training and support. MacCHESS has established itself as one of the most productive facilities in the world for macromolecular crystallography with almost 400 papers published during the past four years as a result of MacCHESS related technical research and development, core and collaborative research and service. More than 23 of these papers were published in the high visibility journals, Science, Nature, and Cell. Three CHESS stations, A-1, F-1 and F-2, are used for macromolecular crystallography experiments. During the next five years, MacCHESS technical R&D will focus on (1) microcrystallography, (2) pressure crycooling and related procedures, (3) SAXS and envelope phasing, (4) automation and high-throughput, and (5) a new station for long wavelength crystallography. Each of these technical R&D efforts is driven by the challenging problems presented by collaborating investigators who study the atomic structure of molecules and complexes of great current interest to medicine and biology, including membrane proteins, signaling protein complexes, nucleic acid/protein complexes, protein drug interactions and viruses. Technical developments resulting from MacCHESS research are freely available to the scientific community and disseminated through meetings, workshops, publications, web distributions and collaborations with other synchrotron sources.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
8P41GM103485-30
Application #
8299453
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Program Officer
Wu, Mary Ann
Project Start
1997-09-01
Project End
2013-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
30
Fiscal Year
2012
Total Cost
$1,724,082
Indirect Cost
$639,754
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Liu, C Tony; Layfield, Joshua P; Stewart 3rd, Robert J et al. (2014) Probing the electrostatics of active site microenvironments along the catalytic cycle for Escherichia coli dihydrofolate reductase. J Am Chem Soc 136:10349-60
Wang, Jian; Anania, Veronica G; Knott, Jeff et al. (2014) Combinatorial approach for large-scale identification of linked peptides from tandem mass spectrometry spectra. Mol Cell Proteomics 13:1128-36
Chatterjee, Debashree; Cooley, Richard B; Boyd, Chelsea D et al. (2014) Mechanistic insight into the conserved allosteric regulation of periplasmic proteolysis by the signaling molecule cyclic-di-GMP. Elife 3:e03650
Paczkowski, Jon E; Fromme, J Christopher (2014) Structural basis for membrane binding and remodeling by the exomer secretory vesicle cargo adaptor. Dev Cell 30:610-24
Ptak, Christopher P; Hsieh, Ching-Lin; Weiland, Gregory A et al. (2014) Role of stoichiometry in the dimer-stabilizing effect of AMPA receptor allosteric modulators. ACS Chem Biol 9:128-33
Merz, Gregory E; Borbat, Peter P; Pratt, Ashley J et al. (2014) Copper-based pulsed dipolar ESR spectroscopy as a probe of protein conformation linked to disease states. Biophys J 107:1669-74
Huo, Yanwu; Nam, Ki Hyun; Ding, Fang et al. (2014) Structures of CRISPR Cas3 offer mechanistic insights into Cascade-activated DNA unwinding and degradation. Nat Struct Mol Biol 21:771-7
Skou, Soren; Gillilan, Richard E; Ando, Nozomi (2014) Synchrotron-based small-angle X-ray scattering of proteins in solution. Nat Protoc 9:1727-39
Martinez, Madeline; Ahmed, Ahmed H; Loh, Adrienne P et al. (2014) Thermodynamics and mechanism of the interaction of willardiine partial agonists with a glutamate receptor: implications for drug development. Biochemistry 53:3790-5
Kang, Hae Joo; Paterson, Neil G; Kim, Chae Un et al. (2014) A slow-forming isopeptide bond in the structure of the major pilin SpaD from Corynebacterium diphtheriae has implications for pilus assembly. Acta Crystallogr D Biol Crystallogr 70:1190-201

Showing the most recent 10 out of 34 publications