Since its inception, the Yeast Resource Center has focused on understanding how genome sequence relates to protein function. The Center began just as budding yeast became the first eukaryote to have its genome sequence completed, and we proposed to use an array of technologies to interpret this sequence. In this application, we undertake novel challenges, centered on understanding how variation in proteins affects their levels, modification, function and structure. We will develop new technologies in three areas: 1) Perturbing and sensing changes to complex pathways; 2) Protein detection and quantitation by mass spectrometry; and 3) Higher order protein structure. These technologies will be driven by ten closely integrated Driving Biomedical Projects. Yeast remains an unparalleled experimental system to develop, test and refine these technologies. As the technologies mature, we will extend their application to higher eukaryotes through internal projects and external collaborations. Furthermore, we make our technologies available as they become robust, through broad collaboration and a well-established track record of dissemination and training.

Public Health Relevance

Our resource is focused on the development of technologies to be used for improving our understanding how genome sequence relates to protein function. This research has played a critical role in the understanding of protein and cellular function. While developed and validated in yeast, these methods impact all aspects of biology.

National Institute of Health (NIH)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Schools of Medicine
United States
Zip Code
Zhao, Xuan; Hirota, Tsuyoshi; Han, Xuemei et al. (2016) Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell 165:1644-57
Shan, Chun-Min; Wang, Jiyong; Xu, Ke et al. (2016) A histone H3K9M mutation traps histone methyltransferase Clr4 to prevent heterochromatin spreading. Elife 5:
Riffle, Michael; Jaschob, Daniel; Zelter, Alex et al. (2016) ProXL (Protein Cross-Linking Database): A Platform for Analysis, Visualization, and Sharing of Protein Cross-Linking Mass Spectrometry Data. J Proteome Res 15:2863-70
Kim, Tae Kwon; Tirloni, Lucas; Pinto, Antônio F M et al. (2016) Ixodes scapularis Tick Saliva Proteins Sequentially Secreted Every 24 h during Blood Feeding. PLoS Negl Trop Dis 10:e0004323
Carvalho, Paulo C; Lima, Diogo B; Leprevost, Felipe V et al. (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11:102-17
Berger, Stephanie; Procko, Erik; Margineantu, Daciana et al. (2016) Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. Elife 5:
Yonashiro, Ryo; Tahara, Erich B; Bengtson, Mario H et al. (2016) The Rqc2/Tae2 subunit of the ribosome-associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for aggregation. Elife 5:e11794
Borges, Marcia H; Figueiredo, Suely G; Leprevost, Felipe V et al. (2016) Venomous extract protein profile of Brazilian tarantula Grammostola iheringi: searching for potential biotechnological applications. J Proteomics 136:35-47
Zich, Judith; May, Karen; Paraskevopoulos, Konstantinos et al. (2016) Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests. PLoS Genet 12:e1005834
Hsia, Yang; Bale, Jacob B; Gonen, Shane et al. (2016) Design of a hyperstable 60-subunit protein icosahedron. Nature 535:136-9

Showing the most recent 10 out of 290 publications