The BioCAT Biotechnology Research Resource operates X-ray beamline 181D at the Advanced Photon Source, Argonne National Laboratory. Now in its 16th year of operation, it is a mature, productive facility with many capabilities unique in the USA, and, arguably, the world. Going forward, we intend to maintain our world-class capabilities in static and time resolved fiber diffraction and small-angle scattering (SAXS) from macromolecules in solution with new emphases on extending SAXS to faster time domains that use less material, and fiber diffraction to smaller spatial domains with wider options on beam sizes, Q ranges and divergences. The BioCAT X-ray florescence microprobe will be made even more efficient and integrated with micro-diffraction mapping, phase contrast and (light) florescence imaging for experiments with substantially more information content. Combining techniques have the potential to greatly accelerate the progress of these types of investigations by making a serial process parallel. A central thread of all core projects will be integrating them with the GDA beamline control environment, developed at the DIAMOND Light Source and adapted here to 18 ID, which will provide a common interface to all experiments and provide advanced support for time resolved experiments. It provides the NeXus file system for efficient handling of very large multidimensional data sets as well as facilitating data archiving and future data mining. Efforts to mitigate radiation damage and a new modeling effort will enhance the validity and information content of muscle diffraction studies. Our Driving Biomedical Projects and collaborative and service projects have relevance to basic mechanisms of muscle function, protein and RNA folding, heart disease, cancer and neurodegenerative diseases. Our proposed training activities are designed to provide users with information and "virtual experiences" so that they are prepared for their visits and make effective use of the resource. Our proposed dissemination activities are designed to ensure that the scientific community is well-informed of resource capabilities.

Public Health Relevance

The Biophysics Collaborative Access Team uses intense X-ray beams from the Advanced Photon Source, Argonne National Laboratory to perform basic biomedical research on non-crystalline biological materials. Results of this research are expected to be relevant to heart disease, arthritis, cancer, and protein misfolding diseases such as Alzheimer's and ALS.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Biotechnology Resource Grants (P41)
Project #
5P41GM103622-19
Application #
8601115
Study Section
Special Emphasis Panel (ZRG1-BCMB-N (40))
Program Officer
Wu, Mary Ann
Project Start
1997-09-30
Project End
2014-12-31
Budget Start
2014-01-01
Budget End
2014-12-31
Support Year
19
Fiscal Year
2014
Total Cost
$1,103,557
Indirect Cost
$193,211
Name
Illinois Institute of Technology
Department
Other Basic Sciences
Type
Schools of Arts and Sciences
DUNS #
042084434
City
Chicago
State
IL
Country
United States
Zip Code
60616
French, Rachel L; Gupta, Nirupama; Copeland, Paul R et al. (2014) Structural asymmetry of the terminal catalytic complex in selenocysteine synthesis. J Biol Chem 289:28783-94
Poor, Catherine B; Wegner, Seraphine V; Li, Haoran et al. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A 111:4043-8
Mansoorabadi, Steven O; Wu, Meilan; Tao, Zhihua et al. (2014) Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Biochemistry 53:1779-88
Kathuria, Sagar V; Kayatekin, Can; Barrea, Raul et al. (2014) Microsecond barrier-limited chain collapse observed by time-resolved FRET and SAXS. J Mol Biol 426:1980-94
Wan, William; Stubbs, Gerald (2014) Heterogeneous seeding of HET-s(218-289) and the mutability of prion structures. Prion 8:
Hitchcock-DeGregori, Sarah E; Irving, Thomas C (2014) Hugh E. Huxley: the compleat biophysicist. Biophys J 107:1493-501
King, John V; Liang, Wenguang G; Scherpelz, Kathryn P et al. (2014) Molecular basis of substrate recognition and degradation by human presequence protease. Structure 22:996-1007
Yang, Sichun (2014) Methods for SAXS-based structure determination of biomolecular complexes. Adv Mater 26:7902-10
Skinner, John J; Yu, Wookyung; Gichana, Elizabeth K et al. (2014) Benchmarking all-atom simulations using hydrogen exchange. Proc Natl Acad Sci U S A 111:15975-80
Barrea, R A; Antipova, O; Gore, D et al. (2014) X-ray micro-diffraction studies on biological samples at the BioCAT Beamline 18-ID at the Advanced Photon Source. J Synchrotron Radiat 21:1200-5

Showing the most recent 10 out of 23 publications