The emergent properties of life require the dynamic interactions of macromolecules, the two major classes of which are proteins and nucleic acids. These interactions form macromolecular machines and dynamic liaisons that shape the cell, transmit information and control cellular behaviors, and pathogenic alterations in molecular interaction networks (interactomes) underlie disease. Our understanding and modulation of biological systems, as well as their pathologies, thus relies on the ability to elucidate and interpret these interactions and their dynamics. For nucleic acids, recent advances have led to an explosion of genomic data. However, proteins are incredibly diverse in their abundance and their properties, making them highly versatile for their dynamic tasks, but at the same time exceptionally difficult to analyze. It is for these reasons that the interactomic revolution still ags very far behind the genomic revolution. The proposed National Center for Dynamic Interactome Research (NCDIR) couples cell biology laboratories, an established mass spectrometry resource, a systems biology resource, and a computational structural biology center. The goal of the NCDIR is to synergistically pioneer new and improved approaches, integrating these technologies into a fundamentally novel """"""""pipeline"""""""" approach to address the urgent need of the biomedical community for technologies that can rapidly, reliably and routinely identify and characterize the dynamic cellular interactome. We will begin by developing technologies for purifying and preserving, with high fidelity, various defined forms of the hierarchical arrangement of interactors surrounding any chosen macromolecule. We will then provide comprehensive, highly quantitative, detailed temporal and structural data for dynamic complexes. Such data will be used to generate structural and mechanistic models that are predictive, testable, actionable, and guide experiments to focus on those that are most informative. The models aim to provide the biomedical community with the means for rational target-based intervention and drug design strategies. These approaches will be developed, refined and beta-tested via a selected set of Driving Biological Projects and Collaborations that can enter and exit our pipeline at any point, and which present specific technological challenges. Critical to the design of the NCDIR is an effective training and dissemination program that is responsive to the urgent needs of the biomedical community.

Public Health Relevance

Most of the properties of living cells are mediated by the ever-changing interactions of their component macromolecules. Pathogenic alterations in these interactions mechanistically underlie diseases such as viral infection and cancer. Much better tools are needed to reveal these interactions. Thus, the goal of the proposed Center is to create new and useful tools to elucidate the dynamics of macromolecular interactions, and to spread these tools amongst the biomedical community. The Center will empower the community to assemble the kinds of detailed, dynamic representations of the interactions in the cell that will help elucidate the principles underlying all cellular processes. These tools will enable researchers to delve into the molecular details of biological processes with unprecedented facility. The resulting insights will impact all areas of medical research, from fundamental discovery to pharmaceutical development.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BST-J (40))
Program Officer
Sheeley, Douglas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
Other Domestic Higher Education
New York
United States
Zip Code
Manna, Paul T; Obado, Samson O; Boehm, Cordula et al. (2017) Lineage-specific proteins essential for endocytosis in trypanosomes. J Cell Sci 130:1379-1392
Wang, Xiaorong; Chemmama, Ilan E; Yu, Clinton et al. (2017) The proteasome-interacting Ecm29 protein disassembles the 26S proteasome in response to oxidative stress. J Biol Chem 292:16310-16320
Herricks, Thurston; Dilworth, David J; Mast, Fred D et al. (2017) One-Cell Doubling Evaluation by Living Arrays of Yeast, ODELAY! G3 (Bethesda) 7:279-288
Wang, Xiaorong; Cimermancic, Peter; Yu, Clinton et al. (2017) Molecular Details Underlying Dynamic Structures and Regulation of the Human 26S Proteasome. Mol Cell Proteomics 16:840-854
Boehm, Cordula M; Obado, Samson; Gadelha, Catarina et al. (2017) The Trypanosome Exocyst: A Conserved Structure Revealing a New Role in Endocytosis. PLoS Pathog 13:e1006063
Chen, Qi; Vieth, Michal; Timm, David E et al. (2017) Reconstruction of 3D structures of MET antibodies from electron microscopy 2D class averages. PLoS One 12:e0175758
Hayama, Ryo; Rout, Michael P; Fernandez-Martinez, Javier (2017) The nuclear pore complex core scaffold and permeability barrier: variations of a common theme. Curr Opin Cell Biol 46:110-118
Santanach, Alexandra; Blanco, Enrique; Jiang, Hua et al. (2017) The Polycomb group protein CBX6 is an essential regulator of embryonic stem cell identity. Nat Commun 8:1235
Domanski, Michal; LaCava, John (2017) Affinity Purification of the RNA Degradation Complex, the Exosome, from HEK-293 Cells. Bio Protoc 7:
Upla, Paula; Kim, Seung Joong; Sampathkumar, Parthasarathy et al. (2017) Molecular Architecture of the Major Membrane Ring Component of the Nuclear Pore Complex. Structure 25:434-445

Showing the most recent 10 out of 78 publications