This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Despite the many excellent studies of EM morphology after RF/FSF into acetone, samples often suffer from ice crystal damage, which is detected in the higher resolution tomographic reconstructions. While for best results the initial vitrification of samples during rapid freezing is a crucial first step, the subsequent RF/FSF process may impose its own potential for ice damage. Due to the melting temperature of acetone at -94.9?C, freeze substitution requires warming the specimen to -90?C at the initiation of the substitution process which is significantly higher than the -140o C that marks the transition between vitrified and crystalline ice [1]. What counts for pure water may not be exactly the same for a mixed protein solution as the high solute concentration of the cytoplasm may raise the phase-transition point to some extent, but likely not to reach the melting temperature of acetone. We have begun to test the merit of starting freeze substitution at lower temperatures (-140?C) with a combination of low-melting solvents in an effort to prevent ice crystal formation at the onset of freeze substitution.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-J (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado at Boulder
Schools of Arts and Sciences
United States
Zip Code
Höög, Johanna L; Lacomble, Sylvain; Bouchet-Marquis, Cedric et al. (2016) 3D Architecture of the Trypanosoma brucei Flagella Connector, a Mobile Transmembrane Junction. PLoS Negl Trop Dis 10:e0004312
Saheki, Yasunori; Bian, Xin; Schauder, Curtis M et al. (2016) Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18:504-15
Brown, Joanna R; Schwartz, Cindi L; Heumann, John M et al. (2016) A detailed look at the cytoskeletal architecture of the Giardia lamblia ventral disc. J Struct Biol 194:38-48
Höög, Johanna L; Lötvall, Jan (2015) Diversity of extracellular vesicles in human ejaculates revealed by cryo-electron microscopy. J Extracell Vesicles 4:28680
Park, J Genevieve; Palmer, Amy E (2015) Properties and use of genetically encoded FRET sensors for cytosolic and organellar Ca2+ measurements. Cold Spring Harb Protoc 2015:pdb.top066043
McCoy, Kelsey M; Tubman, Emily S; Claas, Allison et al. (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999-4014
O'Toole, Eileen T; Dutcher, Susan K (2014) Site-specific basal body duplication in Chlamydomonas. Cytoskeleton (Hoboken) 71:108-18
Marc, Robert E; Anderson, James R; Jones, Bryan W et al. (2014) The AII amacrine cell connectome: a dense network hub. Front Neural Circuits 8:104
Weber, Britta; Tranfield, Erin M; Höög, Johanna L et al. (2014) Automated stitching of microtubule centerlines across serial electron tomograms. PLoS One 9:e113222
Marc, Robert; Pfeiffer, Rebecca; Jones, Bryan (2014) Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem Neurosci 5:895-901

Showing the most recent 10 out of 72 publications