This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Using LC-MS/MS, we have identified the target of a mechanism-based probe against cysteine proteases upregulated during apopotosis as Cathepsin B, implicating its activity in cell death. Cells control their own death through a program termed apoptosis, which is indispensable for development and homeostasis in all metazoans. Lysosomal cysteine proteases are not normally thought of as participating in apoptosis;however, recent reports have shown that the cathepsin proteases can be released from the lysosome during apoptosis, where they can participate in cell death. We report here the development of an activity-based probe that, under optimized conditions, reports on cathepsin B activity only in apoptotic cells by reading out the release of cathepsin B from the lysosomes. Biochemical characterization of apoptosis in cells from cathepsin B null mice shows delayed and suboptimal activation of caspases. Our data further supports a role for cathepsin B in the cytosol as a positive regulator of a cell death feed-forward loop and provides a chemical tool for future investigations. This work has been published: Pratt MR, Sekedat MD, Chiang KP, Muir TW Direct measurement of cathepsin B activity in the cytosol of apoptotic cells by an activity-based probe. Chem Biol. 2009 Sep 25;16(9):1001-12

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-38
Application #
8361536
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-03-01
Project End
2012-03-31
Budget Start
2011-03-01
Budget End
2012-03-31
Support Year
38
Fiscal Year
2011
Total Cost
$1,304
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Mathur, Aabhas; Blais, Steven; Goparaju, Chandra M V et al. (2013) Development of a biosensor for detection of pleural mesothelioma cancer biomarker using surface imprinting. PLoS One 8:e57681
Peterson, Shaun E; Li, Yinyin; Wu-Baer, Foon et al. (2013) Activation of DSB processing requires phosphorylation of CtIP by ATR. Mol Cell 49:657-67

Showing the most recent 10 out of 67 publications