This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Nuclear pore complexes (NPCs) act as effective and robust gateways between the nucleus and the cytoplasm, selecting for the passage of particular macromolecules across the nuclear envelope. NPCs comprise an elaborate scaffold that defines a approximately 30 nm diameter passageway connecting the nucleus and the cytoplasm. This scaffold anchors proteins termed 'phenylalanine-glycine'(FG)-nucleoporins, the natively disordered domains of which line the passageway and extend into its lumen. Passive diffusion through this lined passageway is hindered in a size-dependent manner. However, transport factors and their cargo-bound complexes overcome this restriction by transient binding to the FG-nucleoporins. To test whether a simple passageway and a lining of transport-factor-binding FG-nucleoporins are sufficient for selective transport, we designed a functionalized membrane that incorporates just these two elements. Here we demonstrate that this membrane functions as a nanoselective filter, efficiently passing transport factors and transport-factor-cargo complexes that specifically bind FG-nucleoporins, while significantly inhibiting the passage of proteins that do not. This inhibition is greatly enhanced when transport factor is present. Determinants of selectivity include the passageway diameter, the length of the nanopore region coated with FG-nucleoporins, the binding strength to FG-nucleoporins, and the antagonistic effect of transport factors on the passage of proteins that do not specifically bind FG-nucleoporins. We show that this artificial system faithfully reproduces key features of trafficking through the NPC, including transport-factor-mediated cargo import. A manuscript describing this work has been published (17. T. Jovanovic-Talisman, J. Tetenbaum-Novatt, A.S. McKenney, A. Zilman, R. Peters, M.P. Rout, B.T. Chait """"""""Artificial nanopores that mimic the transport nuclear pore complex"""""""" Nature 457 (2009) 1023-7.)

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rockefeller University
Other Domestic Higher Education
New York
United States
Zip Code
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications