This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Acetylation is a well-studied posttranslational modification that has been associated with a broad spectrum of biological processes, notably gene regulation. Many studies have contributed to our knowledge of the enzymology underlying acetylation, including efforts to understand the molecular mechanism of substrate recognition by several acetyltransferases, but traditional experiments to determine intrinsic features of substrate site specificity have proven challenging. Here, we combine experimental methods with clustering analysis of protein sequences to predict protein acetylation based on the sequence characteristics of acetylated lysines within histones with our unique prediction tool PredMod. We define a local amino acid sequence composition that represents potential acetylation sites by implementing a clustering analysis of histone and nonhistone sequences. We show that this sequence composition has predictive power on 2 independent experimental datasets of acetylation marks. Finally, we detect acetylation for selected putative substrates using mass spectrometry, and report several nonhistone acetylated substrates in budding yeast. Our approach, combined with more traditional experimental methods, may be useful for identifying acetylated substrates proteome-wide. A paper describing these results has been published: Proteome-wide prediction of acetylation substrates Basu A, Rose KL, Zhang JM, et al. PNAS 106 (2009) 13785-13790

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000862-38
Application #
8361569
Study Section
Special Emphasis Panel (ZRG1-BCMB-Q (40))
Project Start
2011-03-01
Project End
2012-03-31
Budget Start
2011-03-01
Budget End
2012-03-31
Support Year
38
Fiscal Year
2011
Total Cost
$2,607
Indirect Cost
Name
Rockefeller University
Department
Miscellaneous
Type
Other Domestic Higher Education
DUNS #
071037113
City
New York
State
NY
Country
United States
Zip Code
10065
Manning, Lois R; Popowicz, Anthony M; Padovan, Julio C et al. (2017) Gel filtration of dilute human embryonic hemoglobins reveals basis for their increased oxygen binding. Anal Biochem 519:38-41
Chait, Brian T; Cadene, Martine; Olinares, Paul Dominic et al. (2016) Revealing Higher Order Protein Structure Using Mass Spectrometry. J Am Soc Mass Spectrom 27:952-65
Boice, Michael; Salloum, Darin; Mourcin, Frederic et al. (2016) Loss of the HVEM Tumor Suppressor in Lymphoma and Restoration by Modified CAR-T Cells. Cell 167:405-418.e13
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Maximizing ion transmission from atmospheric pressure into the vacuum of mass spectrometers with a novel electrospray interface. J Am Soc Mass Spectrom 26:649-58
Mast, Fred D; Rachubinski, Richard A; Aitchison, John D (2015) Signaling dynamics and peroxisomes. Curr Opin Cell Biol 35:131-6
Krutchinsky, Andrew N; Padovan, Júlio C; Cohen, Herbert et al. (2015) Optimizing electrospray interfaces using slowly diverging conical duct (ConDuct) electrodes. J Am Soc Mass Spectrom 26:659-67
Oricchio, Elisa; Papapetrou, Eirini P; Lafaille, Fabien et al. (2014) A cell engineering strategy to enhance the safety of stem cell therapies. Cell Rep 8:1677-1685
Zhong, Yu; Morris, Deanna H; Jin, Lin et al. (2014) Nrbf2 protein suppresses autophagy by modulating Atg14L protein-containing Beclin 1-Vps34 complex architecture and reducing intracellular phosphatidylinositol-3 phosphate levels. J Biol Chem 289:26021-37
Xue, John Z; Woo, Eileen M; Postow, Lisa et al. (2013) Chromatin-bound Xenopus Dppa2 shapes the nucleus by locally inhibiting microtubule assembly. Dev Cell 27:47-59
Indiani, Chiara; O'Donnell, Mike (2013) A proposal: Source of single strand DNA that elicits the SOS response. Front Biosci (Landmark Ed) 18:312-23

Showing the most recent 10 out of 67 publications