This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Alterations of signal transduction pathways play a significant role in the growth and metastasis of human cancers. We focus on the Her2/neu receptor tyrosine kinase, a member of the EGFR growth factor receptor family, which is gene amplified and activated in about 25% of human breast cancer cases. Several drugs that target Her2/neu are used in the treatment of Her2-positive breast cancer, such as a monoclonal antibody to the extracellular portion of the receptor or small molecule kinase inhibitors, but resistance to these drugs has frequently been seen in patients. Better understanding of Her2/neu and the downstream signal transduction pathways it uses will provide improved treatment for breast cancer patients. Our lab studies signal transduction pathways in breast cancer using a variety of approaches involving biochemistry, proteomics, and cell biology.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR000954-34
Application #
8361419
Study Section
Special Emphasis Panel (ZRG1-BCMB-K (40))
Project Start
2011-01-01
Project End
2011-12-31
Budget Start
2011-01-01
Budget End
2011-12-31
Support Year
34
Fiscal Year
2011
Total Cost
$43,636
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Lucey, Brendan P; Mawuenyega, Kwasi G; Patterson, Bruce W et al. (2017) Associations Between ?-Amyloid Kinetics and the ?-Amyloid Diurnal Pattern in the Central Nervous System. JAMA Neurol 74:207-215
Lin, Xiaobo; Racette, Susan B; Ma, Lina et al. (2017) Endogenous Cholesterol Excretion Is Negatively Associated With Carotid Intima-Media Thickness in Humans. Arterioscler Thromb Vasc Biol 37:2364-2369
Cade, W Todd; Levy, Philip T; Tinius, Rachel A et al. (2017) Markers of maternal and infant metabolism are associated with ventricular dysfunction in infants of obese women with type 2 diabetes. Pediatr Res 82:768-775
Ovod, Vitaliy; Ramsey, Kara N; Mawuenyega, Kwasi G et al. (2017) Amyloid ? concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimers Dement 13:841-849
Wei, Xiaochao; Song, Haowei; Yin, Li et al. (2016) Fatty acid synthesis configures the plasma membrane for inflammation in diabetes. Nature 539:294-298
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Mertins, Philipp; Mani, D R; Ruggles, Kelly V et al. (2016) Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 534:55-62
Murata, Takahiro; Dietrich, Hans H; Horiuchi, Tetsuyoshi et al. (2016) Mechanisms of magnesium-induced vasodilation in cerebral penetrating arterioles. Neurosci Res 107:57-62
Hölttä, Mikko; Dean, Robert A; Siemers, Eric et al. (2016) A single dose of the ?-secretase inhibitor semagacestat alters the cerebrospinal fluid peptidome in humans. Alzheimers Res Ther 8:11
Sterl, Karin; Wang, Songyan; Oestricker, Lauren et al. (2016) Metabolic responses to xenin-25 are altered in humans with Roux-en-Y gastric bypass surgery. Peptides 82:76-84

Showing the most recent 10 out of 693 publications