This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The central aim of the proposed research is to assess the feasibility of Wide-field Functional Imaging (WiFI) as a method that will provide objective functional parameters that can be used to determine severity of burn wounds. Accurate determination of burn depth and extent, which is directly related to healing times, is one of the major problems that face any clinician or surgeon in deciding on how to treat skin burns. Thermal injuries are clinically classified according to the depth of the injury as superficial, partial thickness or full thickness. Superficial burns are mild burns whereby the tissue is capable of regenerating the epidermis. Partial thickness injuries destroy a portion of the dermal layer and re-epithelialization can occur if there is sufficient dermis with an adequate vasculature. Full thickness injuries involve destruction of the dermal layer and the reduced blood supply will result in ischemia and necrosis. While both the superficial and full-thickness burns are relatively readily diagnosed, partial thickness burns are difficult and carry with them considerable potential for complication. Overestimation of the burn depth in partial thickness burns results in invasive excisional treatment while underestimation will delay appropriate treatment and potentially lead to infection. In addition, burn wounds undergo dynamic changes during the early stages that must be monitored continually in order to inform proper burn management. The primary method of determining burn depth and severity is bedside clinical assessment and it suffers from being highly subjective. Its accuracy, even by experts in the field, is only 60?80%. There are several technologies in development, in an effort to improve objectivity, however thus far, each of these has limitations that diminish clinical impact. Here we propose to investigate the feasibility of WiFI for quantitative assessment of graded burn wounds in a preclinical model. Efforts will focus on the establishment of a controlled, graded burn wound model, WiFI Imaging of these wounds, analysis and optimization of WiFI data.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California Irvine
Schools of Medicine
United States
Zip Code
Takesh, Thair; Sargsyan, Anik; Lee, Matthew et al. (2017) Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials. Dentistry (Sunnyvale) 7:
Jonscher, Karen R; Stewart, Michael S; Alfonso-Garcia, Alba et al. (2017) Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 31:1434-1448
Takesh, Thair; Sargsyan, Anik; Anbarani, Afarin et al. (2017) Effects of a Novel Whitening Formulation on Dental Enamel. Dentistry (Sunnyvale) 7:
Alfonso-García, Alba; Paugh, Jerry; Farid, Marjan et al. (2017) A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum. J Raman Spectrosc 48:803-812
Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard et al. (2016) D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. J Biomed Opt 21:61003
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Choi, Bernard; Tan, Wenbin; Jia, Wangcun et al. (2016) The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities. IEEE J Sel Top Quantum Electron 2016:
Wang, Mingqiu; Ravindranath, Shreyas R; Rahim, Maha K et al. (2016) Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. Langmuir 32:13124-13136
Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa et al. (2016) Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy. J Biomed Opt 21:46005
Prince, Richard C; Frontiera, Renee R; Potma, Eric O (2016) Stimulated Raman Scattering: From Bulk to Nano. Chem Rev :

Showing the most recent 10 out of 659 publications