This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The main goal of this project is to develop a robust method of non-linear microscopy of human skin imaging. This will include the excitation/emission parameters optimization, depth of imaging improvement (i.e. optical clearing of skin, objective-detector sensitivity) and motion artifacts prevention. The imaging goals are two-fold. First, the more cellular topical skin layers (stratum corneum and epidermis that form fist 50-75 ?m of skin) are bearing the main brunt of skin carcinogenesis: melanocytes are localized within the basal epidermal layer, epidermis is responsible for basal and squamous cell carcinoma as well as benign lesions (actinic keratosis, sebhorreic keratosis, etc) genesis. This is a first barrier protecting the body from environmental factors such as microorganisms, moisture, UV, etc. The underlaying dermis (2-4 mm thickness depending on the body part) bulk is made of connective tissue, a ECM of elastic and collagen fibers, cellular component of which is responsible for wound healing and immune response among others. Human skin reflects age, gender, race, health status. Imaging skin with microscopic resolution and spectral selectivity can provide a powerful tool in understanding important biological and biomechanical processes of wound healing, carcinogenesis, aging, and environmental response.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001192-32
Application #
8362710
Study Section
Special Emphasis Panel (ZRG1-SBIB-L (40))
Project Start
2011-04-01
Project End
2012-03-31
Budget Start
2011-04-01
Budget End
2012-03-31
Support Year
32
Fiscal Year
2011
Total Cost
$31,118
Indirect Cost
Name
University of California Irvine
Department
Physiology
Type
Schools of Medicine
DUNS #
046705849
City
Irvine
State
CA
Country
United States
Zip Code
92697
Takesh, Thair; Sargsyan, Anik; Lee, Matthew et al. (2017) Evaluating the Whitening and Microstructural Effects of a Novel Whitening Strip on Porcelain and Composite Dental Materials. Dentistry (Sunnyvale) 7:
Jonscher, Karen R; Stewart, Michael S; Alfonso-Garcia, Alba et al. (2017) Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 31:1434-1448
Takesh, Thair; Sargsyan, Anik; Anbarani, Afarin et al. (2017) Effects of a Novel Whitening Formulation on Dental Enamel. Dentistry (Sunnyvale) 7:
Alfonso-García, Alba; Paugh, Jerry; Farid, Marjan et al. (2017) A machine learning framework to analyze hyperspectral stimulated Raman scattering microscopy images of expressed human meibum. J Raman Spectrosc 48:803-812
Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard et al. (2016) D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage. J Biomed Opt 21:61003
Malacrida, Leonel; Astrada, Soledad; Briva, Arturo et al. (2016) Spectral phasor analysis of LAURDAN fluorescence in live A549 lung cells to study the hydration and time evolution of intracellular lamellar body-like structures. Biochim Biophys Acta 1858:2625-2635
Choi, Bernard; Tan, Wenbin; Jia, Wangcun et al. (2016) The Role of Laser Speckle Imaging in Port-Wine Stain Research: Recent Advances and Opportunities. IEEE J Sel Top Quantum Electron 2016:
Wang, Mingqiu; Ravindranath, Shreyas R; Rahim, Maha K et al. (2016) Evolution of Multivalent Nanoparticle Adhesion via Specific Molecular Interactions. Langmuir 32:13124-13136
Alfonso-García, Alba; Smith, Tim D; Datta, Rupsa et al. (2016) Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy. J Biomed Opt 21:46005
Prince, Richard C; Frontiera, Renee R; Potma, Eric O (2016) Stimulated Raman Scattering: From Bulk to Nano. Chem Rev :

Showing the most recent 10 out of 659 publications