This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. We propose multi-edge x-ray absorption studies to dissect the fundamental molecular details of the non-innocent behavior of ligands in coordination compounds. The non-innocent nature of ligands is best characterized macroscopically by ligand-based reactivity, where the central metal becomes a spectator and most often a steric scaffold rather than a reactive site. Microscopically this translates into valence orbitals that are rich in ligand contribution (i.e. large ligand covalency). We have already collected preliminary data for formally Ni(II)/Ni(III) redox couple system supported with a pincer-type ligand denoted PNP (PNP = N[2-P(CHMe2)2-4-methylphenyl]2) at the Ni L-, Cl and P K-edges that clearly demonstrate the feasibility of our measurements. Our data unexpectedly show the non-innocent behavior of the pincer-type ligand PNP originally thought to be innocent ancillary in the context of organometallic chemistry and catalysis. Previously this behavior was mainly observed for sulfur and oxygen containing ligands, such as dithiolenes and catecholes. We first plan to study two pincer-type ligands with PCP and PNP compositions that are coordinated to a series of first row transition metals as central metals in their formally mono-, di-, and trivalent forms. Given the reducing ability of phosphorus, we will also investigate pincer ligands having only nitrogen donors, specifically the monoanionic NCN system C6H3[1,3-CH2NiPr2]2. These proposed investigations are part of a larger project aiming to understand the physical-chemical factors that can contribute to non-innocent behavior as a function of the 3d transition metal ion (when shifting from late to mid) and the nature of the heteroatom in the ligand. We wish to set up guidelines for synthetic chemists to be able a priori predict non-innocent behavior.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Arts and Sciences
United States
Zip Code
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264
Niedzialkowska, Ewa; Mruga?a, Beata; Rugor, Agnieszka et al. (2017) Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 134:47-62
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325
Tolbert, William D; Gohain, Neelakshi; Alsahafi, Nirmin et al. (2017) Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 25:1719-1731.e4
Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G et al. (2017) Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin. Sci Data 4:170055
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757
Tzarum, Netanel; de Vries, Robert P; Peng, Wenjie et al. (2017) The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 19:235-245
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968

Showing the most recent 10 out of 581 publications