This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Photosystem II (PS II) is a membrane-bound protein complex found in green plants and cyanobacteria, which catalyzes photosynthetic water oxidation and oxygen evolution. Single-electron photo-oxidations of a specialized chlorophyll molecule in the reaction center are coupled to the four-electron oxidation of water by the oxygen-evolving complex (OEC) in PS II through five intermediate states labeled S0-S4. A protein-bound complex of four Mn atoms is thought to be the site of water oxidation chemistry and to function in charge accumulation. Although this Mn complex has been the subject of numerous biochemical and spectroscopic studies, the exact structure of the complex and the mechanism of water oxidation remain unknown. Although x-ray spectroscopic methods have been perhaps the most informative technique used to derive detailed information about the oxidation states of and the environment surrounding Mn in the OEC most of the x-ray spectroscopic studies were performed on randomly oriented PS II membranes;thus, no angle dependence of EXAFS features was observed. The ability to exploit the plane-polarized nature of synchrotron radiation has made possible the study of dichroism in oriented PS II membranes, mostly, in terms of the orientation dependence of the Mn?Mn vectors in the di-u-oxo and mono-u-oxo bridged Mn2 motifs that have been shown to be present in the OEC. In this proposal we describe experiments with single crystals of Mn model compounds and photosystem II. We expect the present study will provide important insights to the structure of the Mn complex and its electronic properties that are critical for understanding the mechanism of water oxidation and oxygen evolution.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362229
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$55,376
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264
Niedzialkowska, Ewa; Mruga?a, Beata; Rugor, Agnieszka et al. (2017) Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 134:47-62
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325
Tolbert, William D; Gohain, Neelakshi; Alsahafi, Nirmin et al. (2017) Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 25:1719-1731.e4
Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G et al. (2017) Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin. Sci Data 4:170055
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757
Tzarum, Netanel; de Vries, Robert P; Peng, Wenjie et al. (2017) The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 19:235-245
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968

Showing the most recent 10 out of 581 publications