This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The goal of the proposed research is to develop 1s2p resonant inelastic x-ray scattering (RIXS) as a general and quantitative tool for studying enzyme intermediates. We have previously used metal L-edge spectroscopy at SSRL to extend the concept of metal-ligand covalency by showing that the L-edge band shape can be used to quantify interactions between ligands and metal d-orbitals of different symmetry, i.e., differential orbital covalency (DOC). The DOC method allows for experimental determination of basic concepts in chemistry. However, metal L-edge spectroscopy is performed with soft x-rays in ultra-high vacuum and cannot in general be used for enzyme intermediates. 1s2p RIXS involves excitation from 1s 3d (h ~ 7.1 keV) and monitoring of the subsequent 2p 1s photon emission (h2 ~ 6.4 keV). The final state in this resonance process is 2p53dn+1, the same final state as for the L-edge experiment. 1s2p RIXS uses hard x-rays and does not require ultra-high vacuum, and can therefore be used to obtain L-edge-like spectra under in situ conditions. Our new contribution is a quantitative analysis of RIXS spectra in the energy transfer (h - h2) direction using the DOC analysis. The long life time of the 2p hole results in a sharp and feature-rich spectrum that can be accurately fitted using a parameterized multiplet model that includes configuration interaction. The electronic structure, including the DOC, is subsequently extracted from the theoretical model. The method will be used to study high-valent enzyme intermediates that activate inert C?H bonds;heme compounds I and II, the non-heme ferrryl-oxo intermediate in SyrB2 and intermediate Q in the binuclear iron enzyme methane monooxygenase. RIXS provides a new tool to investigate the requirements for C?H bond activation, but also to explain differences in reactivity between heme and non-heme enzymes.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Stanford University
Schools of Arts and Sciences
United States
Zip Code
Remesh, Soumya G; Andreatta, Massimo; Ying, Ge et al. (2017) Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT. J Biol Chem 292:5262-5270
VanderLinden, Ryan T; Hemmis, Casey W; Yao, Tingting et al. (2017) Structure and energetics of pairwise interactions between proteasome subunits RPN2, RPN13, and ubiquitin clarify a substrate recruitment mechanism. J Biol Chem 292:9493-9504
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264
Niedzialkowska, Ewa; Mruga?a, Beata; Rugor, Agnieszka et al. (2017) Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 134:47-62
de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie et al. (2017) A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors. EMBO Mol Med 9:1314-1325
Tolbert, William D; Gohain, Neelakshi; Alsahafi, Nirmin et al. (2017) Targeting the Late Stage of HIV-1 Entry for Antibody-Dependent Cellular Cytotoxicity: Structural Basis for Env Epitopes in the C11 Region. Structure 25:1719-1731.e4
Yoon, Chun Hong; DeMirci, Hasan; Sierra, Raymond G et al. (2017) Se-SAD serial femtosecond crystallography datasets from selenobiotinyl-streptavidin. Sci Data 4:170055
Warelow, Thomas P; Pushie, M Jake; Cotelesage, Julien J H et al. (2017) The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 7:1757
Tzarum, Netanel; de Vries, Robert P; Peng, Wenjie et al. (2017) The 150-Loop Restricts the Host Specificity of Human H10N8 Influenza Virus. Cell Rep 19:235-245
Hettle, Andrew; Fillo, Alexander; Abe, Kento et al. (2017) Properties of a family 56 carbohydrate-binding module and its role in the recognition and hydrolysis of ?-1,3-glucan. J Biol Chem 292:16955-16968

Showing the most recent 10 out of 581 publications