This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Amyloids and filamentous viruses are filamentous biological assemblies, not suited to structural analysis by crystallography or NMR, but well suited to fiber diffraction. Amyloid fibers are formed when proteins change conformation to form insoluble filaments that can cause severe damage and even death. Amyloidoses include Alzheimer?s and Parkinson?s diseases and a variety of prion diseases including Creutzfeldt-Jakob disease and BSE (?mad cow disease?). Mammalian prions are infectious aggregates formed by the aberrantly folded protein PrP. Amyloids share a cross-beta structure, but structural details are not known. Fiber diffraction with electron microscopy, solid state NMR, and other approaches offers the best hope for elucidating structures of amyloids including prions. Structural studies are needed to answer fundamental protein folding questions, to understand amyloid formation, and for rational drug design. Synthetic prions derived from infectious recombinant protein have opened up new possibilities. Improved prion availability, improved methods of specimen preparation, and intense, high quality synchrotron radiation offer unprecedented opportunities to obtain amyloid diffraction data. Filamentous plant viruses are of enormous importance to agriculture, biotechnology and food security, but little is known about their molecular structures. Our structures from synchrotron diffraction data with cryo-electron microscopy are the only published structure determinations for these important pathogens. We use very small quantities of material to make dried fibers under controlled conditions. Fiber diffraction data will be obtained from brain-derived mammalian prions, from prion strains derived from infectious recombinant PrP, from the fungal prion HET-s, from the Alzheimer?s amyloid alpha/beta and other amyloids, and from filamentous plant viruses. The data will be used to evaluate and improve competing models for amyloid structure, and to determine filamentous virus structures.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001209-32
Application #
8362390
Study Section
Special Emphasis Panel (ZRG1-BCMB-P (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
32
Fiscal Year
2011
Total Cost
$279
Indirect Cost
Name
Stanford University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Vickers, Chelsea; Liu, Feng; Abe, Kento et al. (2018) Endo-fucoidan hydrolases from glycoside hydrolase family 107 (GH107) display structural and mechanistic similarities to ?-l-fucosidases from GH29. J Biol Chem 293:18296-18308
Nguyen, Phong T; Lai, Jeffrey Y; Lee, Allen T et al. (2018) Noncanonical role for the binding protein in substrate uptake by the MetNI methionine ATP Binding Cassette (ABC) transporter. Proc Natl Acad Sci U S A 115:E10596-E10604
Aleman, Fernando; Tzarum, Netanel; Kong, Leopold et al. (2018) Immunogenetic and structural analysis of a class of HCV broadly neutralizing antibodies and their precursors. Proc Natl Acad Sci U S A 115:7569-7574
Herrera, Nadia; Maksaev, Grigory; Haswell, Elizabeth S et al. (2018) Elucidating a role for the cytoplasmic domain in the Mycobacterium tuberculosis mechanosensitive channel of large conductance. Sci Rep 8:14566
Lal, Neeraj K; Nagalakshmi, Ugrappa; Hurlburt, Nicholas K et al. (2018) The Receptor-like Cytoplasmic Kinase BIK1 Localizes to the Nucleus and Regulates Defense Hormone Expression during Plant Innate Immunity. Cell Host Microbe 23:485-497.e5
Pluvinage, Benjamin; Grondin, Julie M; Amundsen, Carolyn et al. (2018) Molecular basis of an agarose metabolic pathway acquired by a human intestinal symbiont. Nat Commun 9:1043
Beyerlein, Kenneth R; Jönsson, H Olof; Alonso-Mori, Roberto et al. (2018) Ultrafast nonthermal heating of water initiated by an X-ray Free-Electron Laser. Proc Natl Acad Sci U S A 115:5652-5657
Yoshizawa, Takuya; Ali, Rustam; Jiou, Jenny et al. (2018) Nuclear Import Receptor Inhibits Phase Separation of FUS through Binding to Multiple Sites. Cell 173:693-705.e22
Morrison, Christine N; Spatzal, Thomas; Rees, Douglas C (2017) Reversible Protonated Resting State of the Nitrogenase Active Site. J Am Chem Soc 139:10856-10862
Zhang, Haonan; Qiao, Anna; Yang, Dehua et al. (2017) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259-264

Showing the most recent 10 out of 604 publications