This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. We will be collaborating with De Novo Software in order to develop a standard for interfacing flow cytometry instruments to data analysis software. The ultimate goal of this new standard will be to allow any instrument to be used with any analysis software as long as both are compatible with the standard. In some ways this is an extension of the FCS data standard but instead of compatibility at the file level, there is compatibility at the acquisition level. The development of such a standard would benefit the resource because any instrumentation or data analysis software we develop could be immediately used with commercial systems. This will make it cheaper and faster for the NFCR to develop hardware or software, give our collaborators an easier path to incorporate our hardware or software, and speed the commercial adoption of any new technologies we develop. The collaboration will require us to contribute to the definition and specifications for the standard, and to work closely with De Novo Software to implement a working version of the standard. We will adapt one of our instruments and De Novo will adapt a version of their software to work together using the standard. This working implementation will be used to refine and demonstrate the specification. We expect other commercial companies will get involved once the standard matures. We believe the participation of the NFCR in the creation and adoption of this standard is important to its success, both because of the exposure and expertise that we bring.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001315-30
Application #
8361761
Study Section
Special Emphasis Panel (ZRG1-CB-K (40))
Project Start
2011-04-01
Project End
2013-03-31
Budget Start
2011-04-01
Budget End
2013-03-31
Support Year
30
Fiscal Year
2011
Total Cost
$22,363
Indirect Cost
Name
Los Alamos National Lab
Department
Type
DUNS #
175252894
City
Los Alamos
State
NM
Country
United States
Zip Code
87545
Frumkin, Jesse P; Patra, Biranchi N; Sevold, Anthony et al. (2016) The interplay between chromosome stability and cell cycle control explored through gene-gene interaction and computational simulation. Nucleic Acids Res 44:8073-85
Johnson, Leah M; Gao, Lu; Shields IV, C Wyatt et al. (2013) Elastomeric microparticles for acoustic mediated bioseparations. J Nanobiotechnology 11:22
Micheva-Viteva, Sofiya N; Shou, Yulin; Nowak-Lovato, Kristy L et al. (2013) c-KIT signaling is targeted by pathogenic Yersinia to suppress the host immune response. BMC Microbiol 13:249
Ai, Ye; Sanders, Claire K; Marrone, Babetta L (2013) Separation of Escherichia coli bacteria from peripheral blood mononuclear cells using standing surface acoustic waves. Anal Chem 85:9126-34
Sanders, Claire K; Mourant, Judith R (2013) Advantages of full spectrum flow cytometry. J Biomed Opt 18:037004
Cushing, Kevin W; Piyasena, Menake E; Carroll, Nick J et al. (2013) Elastomeric negative acoustic contrast particles for affinity capture assays. Anal Chem 85:2208-15
Piyasena, Menake E; Austin Suthanthiraraj, Pearlson P; Applegate Jr, Robert W et al. (2012) Multinode acoustic focusing for parallel flow cytometry. Anal Chem 84:1831-9
Austin Suthanthiraraj, Pearlson P; Piyasena, Menake E; Woods, Travis A et al. (2012) One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods 57:259-71
Vuyisich, Momchilo; Sanders, Claire K; Graves, Steven W (2012) Binding and cell intoxication studies of anthrax lethal toxin. Mol Biol Rep 39:5897-903
Chaudhary, Anu; Ganguly, Kumkum; Cabantous, Stephanie et al. (2012) The Brucella TIR-like protein TcpB interacts with the death domain of MyD88. Biochem Biophys Res Commun 417:299-304

Showing the most recent 10 out of 240 publications