This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Protein and lipid kinases are important transducers of cellular information. There are 500+ protein kinases and 30+ lipid kinases in the human genome. We are interested in developing chemical approaches for understanding and deciphering kinase mediated signaling pathways. The goal of this project is to develop highly selective small molecule protein and lipid kinase inhibitors. These small molecules are designed to fit in the ATP binding pocket of the kinases. We use synthetic organic chemistry coupled with structural biology (X-ray co-crystal structures) to develop these molecules. We typically use focused syntheses of five or fewer steps and make on the order of 20 candidate inhibitors per design. This work requires standard structural characterization of the intermediates and final products for publication or structural assignment purposes. Typically we need high resolution mass spectrometry of the small molecules. They are often highly structurally related, allowing for parameters to be optimized and used for a number of samples at once.

National Institute of Health (NIH)
National Center for Research Resources (NCRR)
Biotechnology Resource Grants (P41)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-M (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of California San Francisco
Schools of Pharmacy
San Francisco
United States
Zip Code
Twiss, Jeffery L; Fainzilber, Mike (2016) Neuroproteomics: How Many Angels can be Identified in an Extract from the Head of a Pin? Mol Cell Proteomics 15:341-3
Julien, Olivier; Zhuang, Min; Wiita, Arun P et al. (2016) Quantitative MS-based enzymology of caspases reveals distinct protein substrate specificities, hierarchies, and cellular roles. Proc Natl Acad Sci U S A 113:E2001-10
Cil, Onur; Phuan, Puay-Wah; Lee, Sujin et al. (2016) CFTR activator increases intestinal fluid secretion and normalizes stool output in a mouse model of constipation. Cell Mol Gastroenterol Hepatol 2:317-327
Kintzer, Alexander F; Stroud, Robert M (2016) Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature 531:258-62
Bongrand, Clotilde; Koch, Eric J; Moriano-Gutierrez, Silvia et al. (2016) A genomic comparison of 13 symbiotic Vibrio fischeri isolates from the perspective of their host source and colonization behavior. ISME J 10:2907-2917
Bikle, Daniel D (2016) Extraskeletal actions of vitamin D. Ann N Y Acad Sci 1376:29-52
Bradshaw, J Michael; McFarland, Jesse M; Paavilainen, Ville O et al. (2015) Prolonged and tunable residence time using reversible covalent kinase inhibitors. Nat Chem Biol 11:525-31
Correia, Maria Almira; Wang, YongQiang; Kim, Sung-Mi et al. (2014) Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition? IUBMB Life 66:78-88
Wiita, Arun P; Seaman, Julia E; Wells, James A (2014) Global analysis of cellular proteolysis by selective enzymatic labeling of protein N-termini. Methods Enzymol 544:327-58
Tajon, Cheryl A; Seo, Daeha; Asmussen, Jennifer et al. (2014) Sensitive and selective plasmon ruler nanosensors for monitoring the apoptotic drug response in leukemia. ACS Nano 8:9199-208

Showing the most recent 10 out of 619 publications