This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Human papillomavirus (HPV) is the most common sexually-transmitted infections, and the cause of nearly all cervical and anogenital, and over half of oral cancers. Current HPV treatment is by lesion removal or through immunological intervention (imiquimod as an immune stimulant, or the HPV vaccines to prevent infection of the most common HPVs). While antiviral agents have been developed against many types of viruses, to date no true antivirals are available against HPV. With the heavy reliance on the immune system for HPV treatments/prevention, HPV infections and cancers remain a major problem for HIV/AIDS patients, even after HAART treatment. A true HPV antiviral that acts directly against HPV (and does not rely on the host immune system) would be an important weapon against HPV infections and cancers, particularly in HIV/AIDS patients. Recent successes of small molecule inhibitors that interfere with the herpesvirus primase-helicase interaction justify using such an approach against HPV. Our collaborator (Melendy, UB) has identified an interaction between the HPV DNA replication helicase, E1, and human Topoisomerase I that appears to be vital for HPV genome duplication. They will evaluate a panel of E1 mutations predicted to disrupt the interaction with Topoisomerase to more fully define this interaction. We will analyze the structure of this interaction by SAXS ( in collaboration with the Snell Lab) and single crystal complexes of the two proteins. These data will provide information that will be useful in developing second generation inhibitors that could act as potential HPV antiviral therapeutics.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR001646-29
Application #
8363556
Study Section
Special Emphasis Panel (ZRG1-BCMB-E (40))
Project Start
2011-07-01
Project End
2012-06-30
Budget Start
2011-07-01
Budget End
2012-06-30
Support Year
29
Fiscal Year
2011
Total Cost
$1,824
Indirect Cost
Name
Cornell University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
872612445
City
Ithaca
State
NY
Country
United States
Zip Code
14850
Bauman, Joseph D; Harrison, Jerry Joe E K; Arnold, Eddy (2016) Rapid experimental SAD phasing and hot-spot identification with halogenated fragments. IUCrJ 3:51-60
Xu, Caishuang; Kozlov, Guennadi; Wong, Kathy et al. (2016) Crystal Structure of the Salmonella Typhimurium Effector GtgE. PLoS One 11:e0166643
Cogliati, Massimo; Zani, Alberto; Rickerts, Volker et al. (2016) Multilocus sequence typing analysis reveals that Cryptococcus neoformans var. neoformans is a recombinant population. Fungal Genet Biol 87:22-9
Oot, Rebecca A; Kane, Patricia M; Berry, Edward A et al. (2016) Crystal structure of yeast V1-ATPase in the autoinhibited state. EMBO J 35:1694-706
Lucido, Michael J; Orlando, Benjamin J; Vecchio, Alex J et al. (2016) Crystal Structure of Aspirin-Acetylated Human Cyclooxygenase-2: Insight into the Formation of Products with Reversed Stereochemistry. Biochemistry 55:1226-38
Gupta, Kushol; Martin, Renee; Sharp, Robert et al. (2015) Oligomeric Properties of Survival Motor Neuron·Gemin2 Complexes. J Biol Chem 290:20185-99
Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R et al. (2015) Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site. Structure 23:352-63
Orlando, Benjamin J; Lucido, Michael J; Malkowski, Michael G (2015) The structure of ibuprofen bound to cyclooxygenase-2. J Struct Biol 189:62-6
Wong, Kathy; Kozlov, Guennadi; Zhang, Yinglu et al. (2015) Structure of the Legionella Effector, lpg1496, Suggests a Role in Nucleotide Metabolism. J Biol Chem 290:24727-37
Muñoz-Escobar, Juliana; Matta-Camacho, Edna; Kozlov, Guennadi et al. (2015) The MLLE domain of the ubiquitin ligase UBR5 binds to its catalytic domain to regulate substrate binding. J Biol Chem 290:22841-50

Showing the most recent 10 out of 368 publications