This subproject is one of many research subprojects utilizing theresources provided by a Center grant funded by NIH/NCRR. The subproject andinvestigator (PI) may have received primary funding from another NIH source,and thus could be represented in other CRISP entries. The institution listed isfor the Center, which is not necessarily the institution for the investigator.Bacteriophage Epsilon15 is a generalized transducing phage infecting the human/animal pathogen Salmonella enterica serovar Anatum. Epsilon 15 has been studied for its ability to recognize and bind O-antigen as well as its capacity to alter host lipopolysaccharide in the lysogenic state. The viral protein responsible for O-antigen recognition is the tailspike protein. The virion contains at least six structural proteins and an approximately 40 kb dsDNA genome of known sequence. At the sequence level, the structural proteins most closely resemble the Bcep phages of Burkholderia, a human pathogen affecting cystic fibrosis patients. The virion structural proteins and chromosome together make a particle with a mass of approximately 66 Megadaltons and a diameter of roughly 650 . Jon King's lab has used mass spectrometric methods to identify those open reading frames encoding virion structural proteins. The structure of this virus will reveal the arrangement of structural proteins and, in particular, the configuration of those subunits more directly involved in attachment to the host and passage of DNA into the cytoplasm. A genetic approach is now underway to isolate amber mutants in virus structural proteins. Macromolecular subassemblies formed during infections with these mutant phage will be purified and imaged by reconstruction. These mutant phage will also serve as reagents for imaging the interactions between virus and lipopolysaccharide and receptor proteins at the surface of the host.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002250-22
Application #
7598609
Study Section
Special Emphasis Panel (ZRG1-BPC-K (40))
Project Start
2006-12-01
Project End
2007-11-30
Budget Start
2006-12-01
Budget End
2007-11-30
Support Year
22
Fiscal Year
2007
Total Cost
$32,578
Indirect Cost
Name
Baylor College of Medicine
Department
Physiology
Type
Schools of Medicine
DUNS #
051113330
City
Houston
State
TX
Country
United States
Zip Code
77030
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A et al. (2016) Disk Density Tuning of a Maximal Random Packing. Comput Graph Forum 35:259-269
Wensel, Theodore G; Zhang, Zhixian; Anastassov, Ivan A et al. (2016) Structural and molecular bases of rod photoreceptor morphogenesis and disease. Prog Retin Eye Res 55:32-51
Bucero, Marta Abril; Bajaj, Chandrajit; Mourrain, Bernard (2016) On the construction of general cubature formula by flat extensions. Linear Algebra Appl 502:104-125
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-Particle Cryo-EM of the Ryanodine Receptor Channel in an Aqueous Environment. Eur J Transl Myol 25:4803
Rushdi, Ahmad A; Mitchell, Scott A; Bajaj, Chandrajit L et al. (2015) Robust All-quad Meshing of Domains with Connected Regions. Procedia Eng 124:96-108
Edwards, John; Daniel, Eric; Pascucci, Valerio et al. (2015) Approximating the Generalized Voronoi Diagram of Closely Spaced Objects. Comput Graph Forum 34:299-309
Wensel, Theodore G; Gilliam, Jared C (2015) Three-dimensional architecture of murine rod cilium revealed by cryo-EM. Methods Mol Biol 1271:267-92
Jeter, Cameron B; Patel, Saumil S; Morris, Jeffrey S et al. (2015) Oculomotor executive function abnormalities with increased tic severity in Tourette syndrome. J Child Psychol Psychiatry 56:193-202
Zhang, Qin; Cha, Deukhyun; Bajaj, Chandrajit (2015) Quality Partitioned Meshing of Multi-Material Objects. Procedia Eng 124:187-199
Baker, Mariah R; Fan, Guizhen; Serysheva, Irina I (2015) Single-particle cryo-EM of the ryanodine receptor channel in an aqueous environment. Eur J Transl Myol 25:35-48

Showing the most recent 10 out of 213 publications