This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. Obtain additional spectral information from representatives of the 100 important metabolites of Arabidopsis and populate the database. In the future, we will have a catalog containing the structures of the 10,000 or more'most-abundant smallmolecules in all human tissues. We will also be able to use this information to monitor their fluctuations in concentration in real time, as our bodies continually change. The purpose of this proposal is to take us one step closer to creating metabolomic technologies to fill this void. This proposal explores the use of stable isotope labeling of biological samples coupled with the analytical high sensitivity of mass spectrometry (MS) and the chemical selectivity of high-field NMR spectroscopy as enabling technologies for high-throughput analysis of metabolomes. We call this novel approach isotopeassisted metabolomics.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-26
Application #
8361203
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
26
Fiscal Year
2011
Total Cost
$9,400
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Didychuk, Allison L; Montemayor, Eric J; Carrocci, Tucker J et al. (2017) Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nat Commun 8:497
Ting, See-Yeun; Yan, Nicholas L; Schilke, Brenda A et al. (2017) Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. Elife 6:
Bhute, Vijesh J; Bao, Xiaoping; Dunn, Kaitlin K et al. (2017) Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 7:2078-2091
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725
Handley, Lindsey D; Fuglestad, Brian; Stearns, Kyle et al. (2017) NMR reveals a dynamic allosteric pathway in thrombin. Sci Rep 7:39575
Dias, Andrew D; Elicson, Jonathan M; Murphy, William L (2017) Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Adv Healthc Mater 6:
Zhang, Fan; Barns, Kenneth; Hoffmann, F Michael et al. (2017) Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris. J Nat Prod 80:2551-2555
Nguyen, Eric H; Daly, William T; Le, Ngoc Nhi T et al. (2017) Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng 1:
Bhute, Vijesh J; Ma, Yan; Bao, Xiaoping et al. (2016) The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells. Sci Rep 6:36061

Showing the most recent 10 out of 605 publications