This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. The long-term goal of this application is to understand the role of stearoyl-CoA desaturase in metabolism. Stearoyl-CoA desaturase (SCD) is a critical regulator of lipogenesis that catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). SCD expression is elevated in human and rodent obese and insulin resistant states, suggesting that excess 18:1n9 or 16:1n7 synthesis may contribute to metabolic disease development. Mice with a global deletion of the SCD1 isoform are remarkably resistant to diet- and genetically-induced obesity, insulin resistance and liver steatosis. In this project we will focus on two aims.
In Aim 1, we will determine the contribution of hepatic SCD1 expression to the ER stress response and ER stress-mediated lipogenesis.
In Aim 2, we will determine the mechanisms causing ER stress due to SCD1 deficiency. As the main metabolic culprits in diseases of the metabolic syndrome are lipids, understanding the role of stearoyl-CoA desaturase genes in hepatic metabolism and ER stress pathways might provide major insights

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002301-26
Application #
8361204
Study Section
Special Emphasis Panel (ZRG1-BCMB-H (40))
Project Start
2011-03-01
Project End
2012-02-29
Budget Start
2011-03-01
Budget End
2012-02-29
Support Year
26
Fiscal Year
2011
Total Cost
$661
Indirect Cost
Name
University of Wisconsin Madison
Department
Biochemistry
Type
Schools of Earth Sciences/Natur
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Selen Alpergin, Ebru S; Bolandnazar, Zeinab; Sabatini, Martina et al. (2017) Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol Rep 5:
Didychuk, Allison L; Montemayor, Eric J; Carrocci, Tucker J et al. (2017) Usb1 controls U6 snRNP assembly through evolutionarily divergent cyclic phosphodiesterase activities. Nat Commun 8:497
Ting, See-Yeun; Yan, Nicholas L; Schilke, Brenda A et al. (2017) Dual interaction of scaffold protein Tim44 of mitochondrial import motor with channel-forming translocase subunit Tim23. Elife 6:
Bhute, Vijesh J; Bao, Xiaoping; Dunn, Kaitlin K et al. (2017) Metabolomics Identifies Metabolic Markers of Maturation in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Theranostics 7:2078-2091
Mong, Surin K; Cochran, Frank V; Yu, Hongtao et al. (2017) Heterochiral Knottin Protein: Folding and Solution Structure. Biochemistry 56:5720-5725
Handley, Lindsey D; Fuglestad, Brian; Stearns, Kyle et al. (2017) NMR reveals a dynamic allosteric pathway in thrombin. Sci Rep 7:39575
Dias, Andrew D; Elicson, Jonathan M; Murphy, William L (2017) Microcarriers with Synthetic Hydrogel Surfaces for Stem Cell Expansion. Adv Healthc Mater 6:
Zhang, Fan; Barns, Kenneth; Hoffmann, F Michael et al. (2017) Thalassosamide, a Siderophore Discovered from the Marine-Derived Bacterium Thalassospira profundimaris. J Nat Prod 80:2551-2555
Nguyen, Eric H; Daly, William T; Le, Ngoc Nhi T et al. (2017) Versatile synthetic alternatives to Matrigel for vascular toxicity screening and stem cell expansion. Nat Biomed Eng 1:
Bhute, Vijesh J; Ma, Yan; Bao, Xiaoping et al. (2016) The Poly (ADP-Ribose) Polymerase Inhibitor Veliparib and Radiation Cause Significant Cell Line Dependent Metabolic Changes in Breast Cancer Cells. Sci Rep 6:36061

Showing the most recent 10 out of 605 publications