This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. In hyperoxic contrast studies modulated by the blood oxygenation level-dependent (BOLD) effect, it is often that hyperoxia is a purely intravascular, positive contrast agent in T2*-weighted images, and the effects that are not due to BOLD contrast are small enough to be ignored. In this project, we reevaluated this assumption, with the goal of characterizing non-BOLD effects in T2*-weighted hyperoxic contrast studies. The quality of oxygen as an intravascular contrast agent depends not only on its minimal effects on the underlying physiology, but also on its minimal relaxation effects not due to the dilution of deoxyhemoglobin. Although it is known that molecular oxygen dissolved in the blood has a relatively weak T2 and T1 relaxivities molecular oxygen has been shown to be effective as a T1 contrast agent in body fluids, with a fast wash-in of a significant concentration of molecular oxygen into these tissues. Another important effect is the disruption of the static magnetic field (B0) in the frontal lobes of the brain due to the influence of paramagnetic gaseous oxygen in the upper airway, which has not yet been characterized in hyperoxic contrast studies of the human brain.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Biotechnology Resource Grants (P41)
Project #
5P41RR002305-27
Application #
8362013
Study Section
Special Emphasis Panel (ZRG1-SBIB-Q (40))
Project Start
2011-06-01
Project End
2012-05-31
Budget Start
2011-06-01
Budget End
2012-05-31
Support Year
27
Fiscal Year
2011
Total Cost
$7,688
Indirect Cost
Name
University of Pennsylvania
Department
Radiation-Diagnostic/Oncology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Pang, Henry; Bow, Cora; Cheung, Jason Pui Yin et al. (2018) The UTE Disc Sign on MRI: A Novel Imaging Biomarker Associated With Degenerative Spine Changes, Low Back Pain, and Disability. Spine (Phila Pa 1976) 43:503-511
Ferraro, Pilar M; Jester, Charles; Olm, Christopher A et al. (2018) Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiol Aging 68:85-92
Ercan, Altan; Kohrt, Wendy M; Cui, Jing et al. (2017) Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2:e89703
Xie, Long; Dolui, Sudipto; Das, Sandhitsu R et al. (2016) A brain stress test: Cerebral perfusion during memory encoding in mild cognitive impairment. Neuroimage Clin 11:388-397
Yadav, Santosh K; Kathiresan, Nagarajan; Mohan, Suyash et al. (2016) Gender-based analysis of cortical thickness and structural connectivity in Parkinson's disease. J Neurol 263:2308-2318
Finkelstein, Joel S; Lee, Hang; Leder, Benjamin Z et al. (2016) Gonadal steroid-dependent effects on bone turnover and bone mineral density in men. J Clin Invest 126:1114-25
Rosenbaum, Michael; Leibel, Rudolph L (2016) Models of energy homeostasis in response to maintenance of reduced body weight. Obesity (Silver Spring) 24:1620-9
Machida, Manabu; Panasyuk, George Y; Wang, Zheng-Min et al. (2016) Radiative transport and optical tomography with large datasets. J Opt Soc Am A Opt Image Sci Vis 33:551-8
Ban, H Y; Schweiger, M; Kavuri, V C et al. (2016) Heterodyne frequency-domain multispectral diffuse optical tomography of breast cancer in the parallel-plane transmission geometry. Med Phys 43:4383
Haris, Mohammad; Yadav, Santosh K; Rizwan, Arshi et al. (2015) T1rho MRI and CSF biomarkers in diagnosis of Alzheimer's disease. Neuroimage Clin 7:598-604

Showing the most recent 10 out of 414 publications